System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel 
 Exercise 6 simulates a whale poplutation with a minimum reproductive capacity

System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel

Exercise 6 simulates a whale poplutation with a minimum reproductive capacity

System Zoo Z104: Exponential delay from System Zoo 1 by Hartmut Bossel
System Zoo Z104: Exponential delay from System Zoo 1 by Hartmut Bossel
8 months ago
 Rotating Pendulum Z201 from System Zoo 1 p80-83  https://pt.wikipedia.org/wiki/P%C3%AAndulo / https://en.wikipedia.org/wiki/Pendulum  https://pt.wikipedia.org/wiki/Equa%C3%A7%C3%A3o_do_p%C3%AAndulo https://en.wikipedia.org/wiki/Pendulum_(mechanics)

Rotating Pendulum Z201 from System Zoo 1 p80-83

https://pt.wikipedia.org/wiki/P%C3%AAndulo / https://en.wikipedia.org/wiki/Pendulum

https://pt.wikipedia.org/wiki/Equa%C3%A7%C3%A3o_do_p%C3%AAndulo https://en.wikipedia.org/wiki/Pendulum_(mechanics)

System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
 Perceptual Control Theory Model of Balancing an Inverted Pendulum. See  Kennaway's slides  on Robotics. as well as PCT example WIP notes. Compare with  IM-1831  from Z209 from Hartmut Bossel's System Zoo 1 p112-118

Perceptual Control Theory Model of Balancing an Inverted Pendulum. See Kennaway's slides on Robotics. as well as PCT example WIP notes. Compare with IM-1831 from Z209 from Hartmut Bossel's System Zoo 1 p112-118

 System Zoo Z101: Single integration from System Zoo 1 by Hartmut Bossel

System Zoo Z101: Single integration from System Zoo 1 by Hartmut Bossel

Insight Maker model based on the Z415 System Zoo model originally developed in Vensim.
Insight Maker model based on the Z415 System Zoo model originally developed in Vensim.
System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel
System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel
 System Zoo Z102: System state and state change from System Zoo 1 by Hartmut Bossel

System Zoo Z102: System state and state change from System Zoo 1 by Hartmut Bossel

4 months ago
 System Zoo Z106b: Simple population dynamics from System Zoo 1 by Hartmut Bossel

System Zoo Z106b: Simple population dynamics from System Zoo 1 by Hartmut Bossel

 System Zoo Z106: Simple population dynamics from System Zoo 1 by Hartmut Bossel

System Zoo Z106: Simple population dynamics from System Zoo 1 by Hartmut Bossel

​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources


Insight Maker model based on the Z415 System Zoo model originally developed in Vensim.
Insight Maker model based on the Z415 System Zoo model originally developed in Vensim.
7 months ago
System Zoo Z415 Resource extraction and recycling from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources​     Smaller initial stock, bigger demand, and lower depletion of a nonrenewable resource. For some important resources the almost nent within the next few deca
System Zoo Z415 Resource extraction and recycling from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources​

 Smaller initial stock, bigger demand, and lower depletion of a nonrenewable resource.
For some important resources the almost nent within the next few decades. Estimates not be based on current consumption rate must account for the probable increase of tion of' "dynamic life time", which can be share will accelerate the
exhaustion of stocks is immi- "life time" of resources must a "static" life time index) but rate. This leads to the calcula-shorter than the static life time. Calculation of static and dynamic life time can at best serve to determine the bounds of actual life time of a resource. As a resource becomes scarce, its consump- tion must approach zero thus lengthening the calculated life time. The relative amount of remaining resources, i.e. scarcity, will therefore determine the development of the consumption rate. If material is recycled, it is important to know how quickly a product is scrapped and material is returned to the production process. A model de-scribing the dynamics of nonrenewable resource use must account for these processes.
 Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
​System Zoo Z412 Tourism Dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources


System Zoo Z105: Time-dependent growth from System Zoo 1 by Hartmut Bossel
System Zoo Z105: Time-dependent growth from System Zoo 1 by Hartmut Bossel
System Zoo Z409 Fishery dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources    Fishing is a classic example for use of a renewable resource. Unless overfished, fish populations If is hardly by fishing, then the fish population will persist at a constant
System Zoo Z409 Fishery dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

Fishing is a classic example for use of a renewable resource. Unless overfished, fish populations If is hardly by fishing, then the fish population will persist at a constant size corresponding to its specific ecological envi­ ronment If the stock is overfished, the juvenile generation becomes too small to fully replace the adult generation. If overfishing continues. the population cannot recover and will collapse in short time. Even if fish catch stops now/, it could take decades until the fish population recovers to its original size if it hasn't become extinct meanwhile. In many of the world overtlshing has led, and still leads, to the complete collapse of formerly huge tlsh populations: herring in the North Sea, codtlsh in the Northern Atlantic. tuna, whales to name only a few. With the collapse of fish stocks came the collapse of the t1shing industry in many regions. Employment and
incomes disappeared: whole regions (like Newfoundland) lost their economic base.​