An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

Demo of population growth with distinct agents.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
Demo of population growth with distinct agents.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version  IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version  IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough no
A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough not to be detected by the ‘surveillance’ within the system, but significant enough to encroach upon the “tolerance” zone of the system and compromise the integrity of the system. TYST is an unintentional process that is experienced within the system and made possible by the lack of transparency between an overarching level and a local level where the encroachment is taking place.

Reference:

Haraldsson, H. V., Sverdrup, H. U., Belyazid, S., Holmqvist, J. and Gramstad, R. C. J. (2008), The Tyranny of Small Steps: a reoccurring behaviour in management. Syst. Res., 25: 25–43. doi: 10.1002/sres.859 

Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version  IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Hybrid conceptual mapping of relationships involving system causal loop diagram linked with ABM. Output of the problem conceptualization phase of the modelling process prior to developing a computational hybrid model in AnyLogic. Includes Nate Osgood's O PARTIES extension of Ross Hammond's PARTE
Hybrid conceptual mapping of relationships involving system causal loop diagram linked with ABM. Output of the problem conceptualization phase of the modelling process prior to developing a computational hybrid model in AnyLogic. Includes Nate Osgood's O PARTIES extension of Ross Hammond's PARTE
Demo of population growth with distinct agents.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
Demo of population growth with distinct agents.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
I used the "disease dynamics" tutorial to help me construct this ABM, in which the individual agents are students and the states in which they can find themselves (with regard to learning a new skill/concept) include "confusion," "familiarity," and "mastery." I modeled the transitions from one state
I used the "disease dynamics" tutorial to help me construct this ABM, in which the individual agents are students and the states in which they can find themselves (with regard to learning a new skill/concept) include "confusion," "familiarity," and "mastery." I modeled the transitions from one state to the next under the assumption that a student cannot transition from "mastery" of a particular concept back to "confusion." This model also operates under the assumption that the more students who become familiar with a skill, the more likely it is that other students will, too (presumably, students help each other). 

The skill I imagined being taught to these students is something like Argumentative Writing, as most students can become "familiar" with this skill (or perform "satisfactorily" in it), while only some students are likely to "master" this skill in a given school year. 

I labeled the transitions "exposure" and "practice" to signify that exposing students to a new skill/concept tends to lead to their becoming familiar with it, while students taking on the task of practicing is the only way for them to transition to mastery. 

I complicated this model by adding a teacher to the mix. I also changed the number of states that students can exhibit in order to make it such that there is a 50/50 chance that once a student has learned a skill, he/she will enter a state of confusion as opposed to familiarity with the new skill/concept. The states that teachers can enter include "helpful" and "overwhelmed." The "overwhelmed" state depends on the number of students who are in a state of confusion (asking too many questions). As students transition to the states of familiarity or mastery, the teacher becomes less overwhelmed and moves back into the state of simply being "helpful."  
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

Demo of population growth with distinct agents.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
Demo of population growth with distinct agents.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.   Follow us on  YouTube ,  Twitter ,  LinkedIn  and please

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.