An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.   If you find these contributions meaningful your  sponsor

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
If you find these contributions meaningful your sponsorship would be greatly appreciated.
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Demo of population growth with distinct agents.
Demo of population growth with distinct agents.
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Three Agent Model of  IM-13669 . Unconscious affective dynamics Josh Epstein's Agent Zero Book  webpage   See spatial patches version  IM-15119    
Three Agent Model of IM-13669. Unconscious affective dynamics Josh Epstein's Agent Zero Book webpage 
See spatial patches version IM-15119
 
First attempt at transition between multiple states
First attempt at transition between multiple states
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

Demo of population growth with distinct agents.
Demo of population growth with distinct agents.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.