#### Clone of Isle Royale: Predator Prey Interactions

##### Rolando Jaime Acosta Nunez

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 10 months ago

#### Clone of Royal Island- Resilience

##### Lea Yaman Khatib

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the moose birth-rate to simulate Over-shoot followed by environmental recovery

Experiment with adjusting the moose birth-rate to simulate Over-shoot followed by environmental recovery

- 4 years 11 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Bob Rouf

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 9 months ago

#### Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Lisa Keßler

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 10 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Evgeny Gaponov

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 2 months ago

#### Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions

##### Matthew Gall

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

- 2 years 6 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Mathurin SIX

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 9 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Gianluca

Experiment with adjusting the initial number of moose and wolves on the island.

- 7 years 9 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### David Bonin

Experiment with adjusting the initial number of moose and wolves on the island.

- 1 year 1 month ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Senina Anastassiya

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 2 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Gowtham

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 11 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### oflixs

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 11 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### nicholas

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 11 months ago

#### Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions

##### Austin Hardesty

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

- 2 years 6 months ago

#### Clone of Isle Royale: Predator/Prey Model for Moose and Wolves

##### Patrick Nielsen

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at

https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions

Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,

WolfDeathRateStart,

MooseBirthRateStart,

MooseDeathRateFactorStart,

moStart,

woStart} =

{0.000267409,

0.239821,

0.269755,

0.0113679,

591,

23.};

https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions

Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,

WolfDeathRateStart,

MooseBirthRateStart,

MooseDeathRateFactorStart,

moStart,

woStart} =

{0.000267409,

0.239821,

0.269755,

0.0113679,

591,

23.};

- 2 years 7 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Rob Bennett

Experiment with adjusting the initial number of moose and wolves on the island.

- 1 year 10 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### egert valmra ★

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 4 months ago

#### Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### lmhausw

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 10 months ago

#### Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Anne Stein

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 10 months ago

#### Clone of Clone of Isle Royale: Predator Prey Interactions

##### Marat Jilikbaev

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 2 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Aleksandr

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 years 2 months ago

#### Clone of Clone of Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Christian Kitazume

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 10 months ago

#### Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Lars Johannsen

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 10 months ago

#### Clone of Isle Royale: Predator/Prey Model for Moose and Wolves

##### Donna Odhiambo

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at

https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions

Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,

WolfDeathRateStart,

MooseBirthRateStart,

MooseDeathRateFactorStart,

moStart,

woStart} =

{0.000267409,

0.239821,

0.269755,

0.0113679,

591,

23.};

https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions

Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,

WolfDeathRateStart,

MooseBirthRateStart,

MooseDeathRateFactorStart,

moStart,

woStart} =

{0.000267409,

0.239821,

0.269755,

0.0113679,

591,

23.};

- 2 years 6 months ago