Lake Models

These models and simulations have been tagged “Lake”.

Related tagsEnvironment

This diagram provides an accessible description of the key processes that guide the water quality within a lake.
This diagram provides an accessible description of the key processes that guide the water quality within a lake.
 This story presents a conceptual model of nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow invo

This story presents a conceptual model of nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

Homework problem for 5509, a mass balance model for phosphorus in a Nova Scotia lake. Based on Tanvir Khan's model of the same lake.
Homework problem for 5509, a mass balance model for phosphorus in a Nova Scotia lake. Based on Tanvir Khan's model of the same lake.
 This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This story presents a conceptual model of nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow invo

This story presents a conceptual model of nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

 This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and

This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and add to the stock at which they end.

 This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This model simulates the effect of P input, DO, and Fe:P ratio on sediment, water, and outflow P content.
This model simulates the effect of P input, DO, and Fe:P ratio on sediment, water, and outflow P content.
 This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which

This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which they start and add to the stock at which they end.

 This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

 This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow in

This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

 This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which

This model describes phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows involve a loss from the stock at which they start and add to the stock at which they end.