This model calculates and demonstrates the possible spread of COVID-19 through an agent-based map. It shows the timeline of a healthy individual being infected to recovery.
This model calculates and demonstrates the possible spread of COVID-19 through an agent-based map. It shows the timeline of a healthy individual being infected to recovery.
 A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
 ==edited by Prasiantoro Tusono and Rio Swarawan Putra==     Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with a
==edited by Prasiantoro Tusono and Rio Swarawan Putra==

Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:


 Brief of the model: 

 The model predicts the outbreak of COVID-19 in the Burnie,
Tasmania area. It is imperative to clarify that this model was developed from
the SEIR model (Susceptible, Infected, Infected, Recovered). The spread of this
pandemic is driven by a combination of infection rates, m

Brief of the model:

The model predicts the outbreak of COVID-19 in the Burnie, Tasmania area. It is imperative to clarify that this model was developed from the SEIR model (Susceptible, Infected, Infected, Recovered). The spread of this pandemic is driven by a combination of infection rates, mortality rates, and recovery rates from the virus itself, as well as government policies.

For COVID-19 itself, vaccination directly reduces the infection rate, thereby reducing the mortality rate of COVID-19 patients and the reduction of confirmed cases. In other words, if the local population is adequately vaccinated, everyday life, shopping, tourism, and even national borders will be open rather than in a closed border situation.

 

Assumption of the model:

The model simulated based on different rates, including Infecting rate, Death Rate, Test Rate, Immunity Loss Rate and Recovery Rate. And, this model lists six elements of government policy, which including border closure, travel ban, social distancing, business restriction, self-quarantine, and vaccination schedule.

Besides, the model considers three economic entities in the Burnie area, one in the brick-and-mortar industry and online business industry. Government policies have somewhat reduced COVID-19 infections. Still, they have also at the same time, online businesses played an essential role in stimulating local economic activity during the pandemic. At the same time, however, online businesses played an indispensable role in promoting regional economic activity during the pandemic.

 

The prediction model is for reference only, and there may be differences between the actual cases and the model.

 

 

Insights of the model:

Due to the high infection and low recovery rates and timely government policy interventions, the number of susceptible individuals changes dramatically in the first four weeks. However, the number of sensitive individuals continues to decline after this period, but the decline is not significant. Secondly, with the implementation of government policies, the number of suspected patients who tested negative for medical follow-up continued to rise, implying that government policy interventions directly affect COVID-19.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.