This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021     Insight Author: Pia Mae M. Palay
This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021

Insight Author: Pia Mae M. Palay
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

  LEIA ANTES DE COMEÇAR   Milhões de pessoas ao redor do mundo estão em QUARENTENA em função da pandemia COVID-19. Se adaptar à quarentena pode ser um PROBLEMA para muitas pessoas.   Nosso DESAFIO é construir um DIAGRAMA CAUSAL que analise este PROBLEMA que é ficar em quarentena. Vamos lá!?       PR

LEIA ANTES DE COMEÇAR

Milhões de pessoas ao redor do mundo estão em QUARENTENA em função da pandemia COVID-19. Se adaptar à quarentena pode ser um PROBLEMA para muitas pessoas.

Nosso DESAFIO é construir um DIAGRAMA CAUSAL que analise este PROBLEMA que é ficar em quarentena. Vamos lá!?


PRIMEIRA TAREFA (até dia 13 de maio)

1) Qual a variável CHAVE que você acha que pode definir o problema? Crie uma VARIÁVEL dentro do folder CHAVE.

2) Quais as outras variáveis SECUNDÁRIAS que estão relacionadas com este problema? Crie variáveis secundárias dentro dos FOLDER que melhor identifica o tipo da variável.


SEGUNDA TAREFA

No dia 15 de maio discutiremos virtualmente no Zoom, as variáveis propostas e faremos um DIAGRAMA CAUSAL RASCUNHO.


TERCEIRA TAREFA

No dia 22 de maio discutiremos virtualmente Zoom, o DIAGRAMA CAUSAL RASCUNHO objetivando construir o DIAGRAMA CAUSAL DEFINITIVO.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

   Model description:   This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy.     More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death
Model description:
This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy. 

More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death cases to local economy are illustrated. 

The model is based on SIR (Susceptible, Infected and recovered) model. 

Variables:
The simulation takes into account the following variables: 

Variables related to Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate. 

Variables related to Governmental policies: (1): Vaccination mandate. (2): Travel restriction to Burnie. (3): Economic support. (4): Gathering restriction.

Variables related to economic growth: Economic growth rate. 

Adjustable variables are listed in the part below, together with the adjusting range.

Assumptions:
(1): Governmental policies are aimed to control(reduce) Covid-19 infections and affect (both reduce and increase) economic growth accordingly.

(2) Governmental policy will only be applied when reported cases are 10 or more. 

(3) The increasing cases will negatively influence Burnie economic growth.

Enlightening insights:
(1) Vaccination mandate, when changing from 80% to 100%, doesn't seem to affect the number of death cases.

(2) Governmental policies are effectively control the growing death cases and limit it to 195.