Insight diagram
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
SARS-CoV-19 model
Insight diagram
My Insight 1 covid-19
Insight diagram
SD MODEL COVID-19
Insight diagram
Covid-19 Pandemic
Insight diagram
This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021

Insight Author: Pia Mae M. Palay
System Dynamic Model of COVID 19 in Puerto Princesa City
Insight diagram
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
The government has reduced both the epidemic and economic development by controlling immigration.




Yuhao c, BMA708_Marketing insights into Big Data.
Insight diagram
Агенттик моделирование. ковид Корея
Insight diagram
COVID-19 model with hospitalizations and deaths
Insight diagram
Simulating virus infecting a body after entering, replicating inside living cells, and the body's immune response towards the virus
VirusModel
Insight diagram
Atakan Han 150501024 

During the Covid-19 Outbreak Model
Insight diagram
Pada Tugas 3 mata kuliah Pemodelan Transportasi Laut, ditugaskan untuk membuat pemodelan penyebaran COVID-19 di negara yang dipilih, dan pada simulasi ini merupakan negara Indonesia

Dosen Pengampu : Dr.-Ing Ir Setyo Nugroho
Clone of Simulasi Pemodelan Penyebaran COVID-19 di Indonesia
Insight diagram
SIMULASI COVID-19_AUGUSTO DA COSTA DOS SANTOS
Insight diagram
 Develop a basic Systemigram / Rich Picture to tell the story of covid 19 mitigation 
Systemigram Covid-19
Insight diagram
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

Infectious Disease Model V1.0
Insight diagram
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Clone of SEIR Model for COVID-19 in Indonesia
Insight diagram
COVID-19 Indonesia
Insight diagram
ABM COVID-19
Insight diagram
Initial data from:
Italian data [link], as of Mar 28
Incubation estimation [link

Model focuses on outbreak dynamics and control, this version ignores symptom onset to hospital admission and the rest of recovery dynamics.
Italian COVID 19 outbreak control V2
Insight diagram
Atakan Han 150501024 

After the Covid-19 Outbreak Model
Insight diagram

Model introduction 

This is an SIR model that simulates the potential COVID outbreak that can happen in Burnie, Tasmania after the positive case reported on October 2nd 2021, which incorporates three parts: Susceptible – Infectious – Recovered Looping model, government’s health policy that will affect each phase of the SIR process, and the potential economy that will affect people’s behaviours and thus influence the effectiveness of government’s public policy. 

 

For instance, the values of variables deciding the inflection rate are influenced by actions taken to control the situation, such as through the quarantine of those infected, social distancing, travel bans, and personal isolation and protection strategies. Conversely, the magnitude of the problem at various points in time will also influence the magnitude of the response to control the situation. 

 

Assumptions

1. The population is assumed to be homogeneous and well-mixed. And there is no significant change on the total population due to births and deaths.

2. Once lockdown is lifted, no further imported cases are assumed to occur.

3. Super spreader events are not explicitly considered. 

4. The interaction among states is assumed to be implicit. 

5. All confirmed cases would go to quarantine, and 90% of their contacts can be traced.

6. Contact tracing and testing capacity is sufficient.


Insights

Ideally, both one-way scenario analysis and two-way scenario analysis (amount change in one/two variables each time) will be conducted to find out the variable that has the greatest impact on getting new cases. Insights below can be gained:

 

1.What happens if people are more/less likely to pass on infection, through washing their hands and sneeze into their elbows (infection rate affected by people’s behaviours that will further induced by government’s policies)

2. How vaccination rate will affect the development of positive cases 

3. What if the structure of the contact network changes (extent to which school, workplace and restaurants is shut down) 

4. How growth rate is sensitive to the duration of illness and probability of infection

SIR - Government - Economy model of COVID19 outbreak in Burnie, Tasmania AU
Insight diagram

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Clone of SEIR Infectious Disease Model for COVID-19
Insight diagram
Агентное моделирование Covid-19