A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

A Susceptible-Infected-Recovered (SIR) disease model with waning immunity

This model shows an SIR model of COVID-19 infection in the Philippines. The data used in this model are recent data from COVID-19 statistics reports this 2022. The format of this Philippine COVID-19 model is guided by an Infection Model developed by martin.
This model shows an SIR model of COVID-19 infection in the Philippines. The data used in this model are recent data from COVID-19 statistics reports this 2022. The format of this Philippine COVID-19 model is guided by an Infection Model developed by martin.
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover    Assumptions  The government has reduced both the e
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
The government has reduced both the epidemic and economic development by controlling immigration.




 Modelling of the SARS-Cov-2 viral outbreak using an SEIR model plus specific extensions to model demand for health and care resources.     The model includes biths and deaths, and migration to accommodate import and export of infected individuals from other areas.     Healthcare resources identifie
Modelling of the SARS-Cov-2 viral outbreak using an SEIR model plus specific extensions to model demand for health and care resources.

The model includes biths and deaths, and migration to accommodate import and export of infected individuals from other areas.

Healthcare resources identifies need for hospital beds and critical care.

The model is uses arrays to reflect the different impacts of modelled parameters by age and sex.
   Introduction    This model simulates the COVID-19 outbreaks in Burnie, the government reactions, as well as the economic impact. The government's strategy is based on the number of COVID-19 cases reported and testing rates and recovered.       Assumptions    In the same trend that government poli
Introduction
This model simulates the COVID-19 outbreaks in Burnie, the government reactions, as well as the economic impact. The government's strategy is based on the number of COVID-19 cases reported and testing rates and recovered.

Assumptions
In the same trend that government policy decreases infection, it also reduces economic growth.
When there are ten or fewer COVID-19 cases reported, government policy is triggered.
The economy suffers as a result of an increase in COVID-19 cases.

Interesting insights
The higher testing rates appear to result in a more quick government response, resulting in fewer infectious cases. However, it has a negative influence on the economy.
 Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

        Model description:     This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania. It also tell us the impact of economic policies on outbreak models and economic growth.       Variables:    The simulation takes into account the following variables and its adjusting ra

Model description:

This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania. It also tell us the impact of economic policies on outbreak models and economic growth.

 

Variables:

The simulation takes into account the following variables and its adjusting range: 

 

On the left of the model, the variables are: infection rate( from 0 to 0.25), recovery rate( from 0 to 1), death rate( from 0 to 1), immunity loss rate( from 0 to 1), test rate ( from 0 to 1), which are related to Covid-19.

 

In the middle of the model, the variables are: social distancing( from 0 to 0.018), lock down( from 0 to 0.015), quarantine( from 0 to 0.015), vaccination promotion( from 0 to 0.019), border restriction( from 0 to 0.03), which are related to governmental policies.

 

On the right of the model, the variables are: economic growth rate( from 0 to 0.3), which are related to economic growth.

 

Assumptions:

(1) The model is influenced by various variables and can produce different results. The following values based on the estimation, which differ from actual values in reality.

 

(2) Here are just five government policies that have had an impact on infection rates in epidemic models. On the other hand, these policies will also have an impact on economic growth, which may be positive or negative.

 

(3) Governmental policy will only be applied when reported cases are 10 or more. 

 

(4) This model lists two typical economic activities, namely e-commerce and physical stores. Government policies affect these two types of economic activity separately. They together with economic growth rate have an impact on economic growth.

 

Enlightening insights:

(1) In the first two weeks, the number of susceptible people will be significantly reduced due to the high infection rate, and low recovery rate as well as government policies. The number of susceptible people fall slightly two weeks later. Almost all declines have a fluctuating downward trend.

 

(2) Government policies have clearly controlled the number of deaths, suspected cases and COVID-19 cases.

 

(3) The government's restrictive policies had a negative impact on economic growth, but e-commerce economy, physical stores and economic growth rate all played a positive role in economic growth, which enabled the economy to stay in a relatively stable state during the epidemic.

Данная модель отражает распространение COVID-19 в России на основе статистики за 2020 год. Модель построена в среде Insight Maker по типу SEIRD (Susceptible–Exposed–Infected–Recovered–Dead), с упрощённой динамикой.  Основные параметры:    -Исходное население (масштабировано) : 1000 человек  - Заражё
Данная модель отражает распространение COVID-19 в России на основе статистики за 2020 год. Модель построена в среде Insight Maker по типу SEIRD (Susceptible–Exposed–Infected–Recovered–Dead), с упрощённой динамикой.
Основные параметры:
-Исходное население (масштабировано): 1000 человек
-Заражённые в начале: 2.12% → 21 человек
-Выздоровевшие (Recovery period): через 14 дней
-Смертность: 1.71% от заболевших
-Потеря иммунитета: не учитывается (0%)
-Exogenous (внешнее заражение): 2.12%
-Transmit: 0.3 (зависит от количества заражённых и восприимчивых)
 This model can be used to investigate how government interventions affect transmission and mortality associated with COVID-19 during an outbreak, and how these interventions impact on the economic activities in Burnie, Tasmania.     Assumptions can be made that effective government intervention can
This model can be used to investigate how government interventions affect transmission and mortality associated with COVID-19 during an outbreak, and how these interventions impact on the economic activities in Burnie, Tasmania.

Assumptions can be made that effective government intervention can reduce the number of people infected, whereas the local economy is severely impacted.

Insights:
1. When COVID-19 case are more than 10, government policy will be triggered.

2. Testing rate is very crucial to understanding the spread of the pandemic and responding appropriately.


 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus