Simulation of the spread of COVID-19 in Wuhan.
Simulation of the spread of COVID-19 in Wuhan.
  Introduction:   This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government
Introduction:
This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government policies.

Variables: 
This simulation contains some relevant variables as follow:

Variables in Covid-19 outbreaks: (1) Infection rate, (2) Recovery rate, (3) Death rate, (4) Immunity loss rate

Variables in Government policies: (1) Vaccination rate, (2) Lockdown, (3) Travel ban, (4)Quarantine

Variables in Economy: (1) E-commerce business, (2) Unemployment rate, (3) Economic growth rate.

Assumption:
Government responses would be triggered when reported Covid-19 cases are at least 10.

The government policies reduce the spreading of Covid-19, but they would also limit economic development at the same time due to the negative impact of the policies on the economy is greater than the positive impact.

The increase in reported Covid-19 cases would negatively affect economic growth.

Interesting Insights:
The first finding is that the death number would keep increasing even though the infection rate has decreased, but with stronger government policies (such as implementing a coefficient over 25%), no more death numbers will occur caused by Covid-19.

The second finding is that as government policies limit business activities, with the increasing number of reported Covid-19 cases, economic growth will suffer a severe blow even if e-commerce grows, it can’t make up for this economic loss.
Данная модель отражает распространение COVID-19 в России на основе статистики за 2020 год. Модель построена в среде Insight Maker по типу SEIRD (Susceptible–Exposed–Infected–Recovered–Dead), с упрощённой динамикой.  Основные параметры:    -Исходное население (масштабировано) : 1000 человек  - Заражё
Данная модель отражает распространение COVID-19 в России на основе статистики за 2020 год. Модель построена в среде Insight Maker по типу SEIRD (Susceptible–Exposed–Infected–Recovered–Dead), с упрощённой динамикой.
Основные параметры:
-Исходное население (масштабировано): 1000 человек
-Заражённые в начале: 2.12% → 21 человек
-Выздоровевшие (Recovery period): через 14 дней
-Смертность: 1.71% от заболевших
-Потеря иммунитета: не учитывается (0%)
-Exogenous (внешнее заражение): 2.12%
-Transmit: 0.3 (зависит от количества заражённых и восприимчивых)
5 7 months ago
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
   Description         The model shows Covid-19 situations in Burnie, Tasmania. Under such circumstances, how the state government deals with the pandemic and how economy changes will be illustrated. The relationship between government policy and economic activities under Covid-19 outbreaks will be

Description

 

The model shows Covid-19 situations in Burnie, Tasmania. Under such circumstances, how the state government deals with the pandemic and how economy changes will be illustrated. The relationship between government policy and economic activities under Covid-19 outbreaks will be explained through different variables.


Assumptions

 

Government policy negatively affects Covid-19 outbreaks and economic activities.

Covid-19 outbreaks also has negative effects on economic growth.

 

Parameters

 

There are several fixed and adjusted variables.

 

1.     COVID-19 Outbreaks

Fixed variables: infection rate, recovery rate

Adjusted variables: immunity loss rate

 

2.     Government Policy

Adjusted variables: lockdown, social distancing, testing, vaccination

3.     Economic impact

Fixed variables: tourism

Adjusted variables: economic growth rate

 

Interesting Insights

 

Tourism seems to be the most effective way to bring back economic growth in Tasmania, and it takes time to recover from Covid-19.

 

Government policies tend to have negative influences on economic growth.

Variant of the model "COVID-19 spread" made by Anxo-Lois Pereira and Miquel Martínez de Morentin, including reinfection, permanent immunity and Vaccines. Made for the subject of TAED.
Variant of the model "COVID-19 spread" made by Anxo-Lois Pereira and Miquel Martínez de Morentin, including reinfection, permanent immunity and Vaccines. Made for the subject of TAED.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.