Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?
Buying and storing electricity when it is cheap, and selling it when it is expensive. What are the benefits, both public and private?

 Bibliography for Picture:    ​(2011). A Look at Green Energy Sources for the Home.  Realitybiznews . Retrieved from http://realtybiznews.com/a-look-at-green-energy-sources-for-the-home/9877539/
Bibliography for Picture:

​(2011). A Look at Green Energy Sources for the Home. Realitybiznews. Retrieved from http://realtybiznews.com/a-look-at-green-energy-sources-for-the-home/9877539/
Major update 12 December 2015 (v3.0): This new version of the model overhauls the way that incumbent energy source (fossil sources plus biomass, hydro electricity and nuclear electricity) supply capacity is implemented. This is now based on direct (exogenous) input of historical data, with the futur
Major update 12 December 2015 (v3.0): This new version of the model overhauls the way that incumbent energy source (fossil sources plus biomass, hydro electricity and nuclear electricity) supply capacity is implemented. This is now based on direct (exogenous) input of historical data, with the future supply curve also set directly (but using a separate input array to the historical data). For coal and natural gas fired electricity, this also requires that the simple, direct-input EROI method be used (i.e. same as for coal and NG heating, and petroleum transport fuels).

Note that this new version of the model no longer provides a historical view of the emplacement rates for energy supply sources other than wind and PV, and therefore no longer allows comparison of required emplacement rates for wind and PV with incumbent energy sources. Output data relating to this is available in model version v2.5 (see link below), for the specific transition duration built into that version of the model.

The previous version of the model (version 2.5) is available here.

The original "standard run" version of the model (v1.0) is available here.
This is step 3 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​  In this step we added the reflection of the Earth by the Albedo effect.        With Our-Green-Spine we have discovered new insights how trees / forest / green stru
This is step 3 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​

In this step we added the reflection of the Earth by the Albedo effect.


With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
The 3-machines energy transition model is a global system dynamics model based on energy balances,  and used to explore the energy frontiers for stabilizing the Earth's climate. The model comprises a hypothetical fossil engine, a solar engine including energy storage, and a carbon scrubber. These ma
The 3-machines energy transition model is a global system dynamics model based on energy balances,  and used to explore the energy frontiers for stabilizing the Earth's climate. The model comprises a hypothetical fossil engine, a solar engine including energy storage, and a carbon scrubber. These machines interact with Earth's carbon cycle and satisfy humanity’s energy demand. A detailed description can be accessed here: https://osf.io/fcwt8/
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
         SUST1001U Sustainability Fundamentals   Dr. Bob Bailey  Group 4:  Amandeep Saroa 	(100836651) Matt Baird	 	(1008406500)  Nami Zuha 		(100821467)  Zachary Wayne 	(100814747)    
The purpose of the InsightMaker model is to model how Waste-to-Energy (WtE) technology impacts waste management ef


SUST1001U Sustainability Fundamentals
Dr. Bob Bailey

Group 4:

Amandeep Saroa (100836651)
Matt Baird (1008406500)

Nami Zuha (100821467)

Zachary Wayne (100814747)

The purpose of the InsightMaker model is to model how Waste-to-Energy (WtE) technology impacts waste management efficiency, energy output and greenhouse gas emissions for the scale of ten years (assuming the WtE technology integration in an urban setting). This will determine if WtE has the capability of minimizing the reliance on waste landfills as well as assisting reaching renewable energy targets. This model will shine light on Waste-to-Energy sustainability opportunities and challenges.


Orange variables are associated with calculating waste volume, green variables are associated with calculating energy generation.



5 months ago
Changes to V17: capacity retirement updated, fraction of Al in energy intensities endognously calculated; fC repair is now also limited by Al supply gap
Changes to V17: capacity retirement updated, fraction of Al in energy intensities endognously calculated; fC repair is now also limited by Al supply gap
10 6 months ago
An initial amount of Energy is converted into Energy 1 and Energy 2. Energy conservation requires Energy 1 + Energy 2 + Energy = Initial Energy. Simulation Error can be corrected by adding some feedback structure to adjust the amount of Energy 1 and Energy 2 to maintain near zero error over course o
An initial amount of Energy is converted into Energy 1 and Energy 2. Energy conservation requires Energy 1 + Energy 2 + Energy = Initial Energy. Simulation Error can be corrected by adding some feedback structure to adjust the amount of Energy 1 and Energy 2 to maintain near zero error over course of simulation.

Shows the payout sub-model for the energy savings the consultants provide
Shows the payout sub-model for the energy savings the consultants provide