Insight diagram
Michael Marmot's Eur J Epidemiol Essay 2017 See also IM-62760  Social determinants of health from Michael Marmot's  ABC 2016 Boyer Lectures on Social Justice and the Health Gap
Social Justice, Epidemiology and Health Inequalities
Insight diagram
​HYSTERESIS
The lost energy associated with delay.
Hysteresis is the dependence of a system not only on its current environment but also on its past environment. This dependence arises because the system can be in more than one internal state. To predict its future development, either its internal state or its history must be known.[1] If a given input alternately increases and decreases, the output tends to form a loop as in the figure. However, loops may also occur because of a dynamic lag between input and output.
Hysteresis is produced by positive feedback to avoid unwanted rapid switching. Hysteresis has been identified in many other fields, including economics and biology.

Economic systems can exhibit hysteresis. For example, export performance is subject to strong hysteresis effects: because of the fixed transportation costs it may take a big push to start a country's exports, but once the transition is made, not much may be required to keep them going.
Hysteresis is used extensively in the area of labor markets. According to theories based on hysteresis, economic downturns (recession) result in an individual becoming unemployed, losing his/her skills (commonly developed 'on the job'), demotivated/disillusioned, and employers may use time spent in unemployment as a screen. In times of an economic upturn or 'boom', the workers affected will not share in the prosperity, remaining long-term unemployed (over 52 weeks). Hysteresis has been put forward[by whom?] as a possible explanation for the poor unemployment performance of many economies in the 1990s. Labor market reform, or strong economic growth, may not therefore aid this pool of long-term unemployed, and thus specific targeted training programs are presented as a possible policy solution.

One type of hysteresis is a simple lag between input and output. A simple example would be a sinusoidal input X(t) and output Y(t)that are separated by a phase lag φ:

Such behavior can occur in linear systems, and a more general form of response is

where χi is the instantaneous response and Φd(t-τ) is the response at time t to an impulse at time τ. In the frequency domain, input and output are related by a complex generalized susceptibility.[3]

HYSTERESIS
Insight diagram
​Summary of Hermans Scale dynamics of grassroots innovations through parallel pathways of  transformative change Ecological Economics 2016 article (paywalled) This is applied to health in a subsequent insight
Multiscale innovation dynamics
Insight diagram
4H's Pioneer Seeds (Economical)
Insight diagram

This paper aims at describing a case where system dynamics modeling was used to evaluate the effects of information and material supply lead-time variation on sales contributions margins and operating cash conversion cycle of a commodity export business.  An empirical dynamic model, loaded with econometric theory of price effect on competitive demand, was used to describe the input data.  The model simulation outputs proved themselves relevant in analyzing the complex interconnections of multiple variables affecting  the profitability in a commercial routine, supporting the decision process among sales managers.

SDR Case study System dynamic modelling
Insight diagram
Economic model
Insight diagram

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

THE MODEL IS ZONE SPECIFIC AS GLOBAL WEATHER IS NOT HOMOGENEOUS BUT A COLLECTION OF HEAT BUMBPS DEPENDENT ON POPULATION SIZE OF URBAN HEAT ISLANDS AND MASSED CONURBATIONS AND AGGLOMERATIONS 

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

2017 Weather & Climate Extreme Loss of Arable Land and Ocean Fertility by Guy Lakeman - The World3+ Model: Forecaster
Insight diagram
This page provides a structural analysis of POTUS Candidate Chris Christi's economic policy based on the information at: https://d70h9a36p82zs.cloudfront.net/Ccpres2016/base/assets/1-0-1/production/Chris-Christie-TheEconomy.pdf   The method used is Integrative Propositional Analysis (IPA) available: ​ http://scipolicy.org/uploads/3/4/6/9/3469675/wallis_white_paper_-_the_ipa_answer_2014.12.11.pdf
DRAFT IPA of Chris Christi economic policy
Insight diagram
Overview of Part G Ch 27 to 30 of Mitchell Wray and Watts Textbook see IM-164967 for book overview
History of Macroeconomic Thought
Insight diagram

This model simulates a COVID outbreak occurring at Burnie, Tasmania. It links the extent to the pandemic with governments intervention policies aiming to limit the spread of the virus. The other part of the model illustrates how will the COVID statistics and the government enforcement jointly influence the economic environment in the community. A number of variables are taken into account, indicating positive or negative relationship in the infection and the economy model respectively.

 

Assumptions

·         Government takes responsive actions when the number of acquired cases exceeds 10.

·         Government’s prompt actions, involving closure of the state border, lockdown within the city, plans on mandatory vaccination and testing, effectively control the infection status.

·         Economic activities are reduced due to stagnation in statewide tourism, closure of brick-and-mortar businesses, and increased unemployment rate, as results of government restrictions.

 

Insights

Government’s rapid intervention can effectively reduce the infected cases. The national vaccination rollout campaign raises vaccination rate in Australians, and particularly influence the death rate in the infection model. Please drag the slider of vaccination to a higher rate and run the model to compare the outcomes.

Although local economy is negatively affected by government restriction policies, consumer demand in online shopping and government support payments neutralize the negative impact on economy and maintain the level of economic activities when infections get controlled. 

Simulation model of COVID outbreak in Burnie Tasmania_Yuchen Zhang_574644
Insight diagram
WFA4133 Graham-Schaefer model with variable F & Econmics
Insight diagram
This page provides a structural analysis of POTUS Candidate Rand Paul's economic policy based on the information at:  https://www.randpaul.com/issue/spending-and-debt and also   https://www.randpaul.com/issue/taxes  The method used is Integrative Propositional Analysis (IPA) available: ​ http://scipolicy.org/uploads/3/4/6/9/3469675/wallis_white_paper_-_the_ipa_answer_2014.12.11.pdf
DRAFT IPA of Rand Paul Economic Policy
Insight diagram
Laying out and testing before coupling to main model (which is Final Project)
Socio-Economic Factors
Insight diagram

Description

 

The model shows Covid-19 situations in Burnie, Tasmania. Under such circumstances, how the state government deals with the pandemic and how economy changes will be illustrated. The relationship between government policy and economic activities under Covid-19 outbreaks will be explained through different variables.


Assumptions

 

Government policy negatively affects Covid-19 outbreaks and economic activities.

Covid-19 outbreaks also has negative effects on economic growth.

 

Parameters

 

There are several fixed and adjusted variables.

 

1.     COVID-19 Outbreaks

Fixed variables: infection rate, recovery rate

Adjusted variables: immunity loss rate

 

2.     Government Policy

Adjusted variables: lockdown, social distancing, testing, vaccination

3.     Economic impact

Fixed variables: tourism

Adjusted variables: economic growth rate

 

Interesting Insights

 

Tourism seems to be the most effective way to bring back economic growth in Tasmania, and it takes time to recover from Covid-19.

 

Government policies tend to have negative influences on economic growth.

BMA708 Assignment 3_Yu Wang_595070
Insight diagram
Prosperity Loop v1.0
8 months ago
Insight diagram

Introduction;

This model shows COVID-19 outbreak in Burnie have some impact for local economy situation and government policy. The main government policy is lockdown during the spreading period which can help reduce the infected rate, and also increase the test scale to help susceptible confirm their situation.


Variables;

Infection rate, Death rate, Recovery rate, test rate, susceptible, immunity rate, economy growth rate

These variables are influenced by different situation.


When cases over 10, government will implement lockdown policy.


Conclusion;

When cases increase too much , they will influence the economic situation.


Interesting insights:

If the recover rate is higher, more people will recover from the disease. It seems to be a positive sign. However, it would lead to a higher number of recovered people and more susceptible. As a result, there would be more cases, and would have a negative impact on the economic growth. 

Model of COVID-19 Outbreak in Burnie, Tamania ( WANTING BAO, 536865)
Insight diagram
Economical 4H Insight
Insight diagram
An initial study of the economics of single use coffee pods.
3 variables-- ORIGINAL Coffee Pods ISD Humanities v 1.02
Insight diagram
Simple causal loop diagram of a simple interest savings account.
Causal loop diagram of savings account - simple interest
Insight diagram
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Lab 13 Start_Base model
Insight diagram
Addition to Program Evaluation Insight based on Health System Efficiency WHO Europe 2016 publication includes vital signs
Health System Efficiency
Insight diagram
This model illustrates the current practice and consequences of government spending. Following the direction of the arrows from right to left the model shows the following sequence based on current practice:

Government Spending at a certain point leads to spending in excess of tax receipts. This will automatically lead to the issue of treasuries in the belief that the excess spending must be financed by borrowing (although the government has the capacity to create  money). This in turn will increase the national debt.

 Consequences that follow from this practice:

1) That national debt increases whenever the government spends in excess of tax receipts.

2) That the government must pay interest on the debt issued, which in turn increases and reinforces the need for government spending.

3) That the interest paid on treasuries will increase private sector income.

There is an alternative view, supported by Modern Monetary Theory, of how government spending can proceed. Please see this  Insight: 

https://insightmaker.com/insight/19954

Government Spending (Current Practice)
Insight diagram
Clone of Pesticide Use in Central America for Lab work


This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides. 

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions. 

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998). 

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

Clone of REM 221 - Causal Loop diagramming