Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.
 Modern industrial civilisation has created massive
interdependencies which define it and without which it could not function. We all
depend on industrial farming to produce the food we eat, we depend on gasoline
being available at the gas station,  on the
availability of electricity and even on the

Modern industrial civilisation has created massive interdependencies which define it and without which it could not function. We all depend on industrial farming to produce the food we eat, we depend on gasoline being available at the gas station,  on the availability of electricity and even on the bread supplied by the local baker. Naturally, we tend to support the institutions that supply the amenities and goods to which we have become accustomed: if we get our food from the local supermarket, it is likely that we would be opposed to it’s closure. This means that the economic system that relies on continuous growth enjoys implicit societal support and that nothing short of environmental disaster or a shortage of essential raw materials will impede it’s growing indefinitely. It is not hard to work out the consequences of this situation!

  Overview:
  

 The
COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak,
the impacts of government policy on both the COVID-19 outbreak and the GDP
growth in Burnie.  

  Assumptions:  

 We set some
variables at fix rates, including the immunity loss rate, recovery rate, de

Overview:

The COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak, the impacts of government policy on both the COVID-19 outbreak and the GDP growth in Burnie.

Assumptions:

We set some variables at fix rates, including the immunity loss rate, recovery rate, death rate, infection rate and case impact rate, as they usually depend on the individual health conditions and social activities.

It should be noticed that we set the rate of recovery, which is 0.7, is higher than that of immunity loss rate, which is 0.5, so, the number of susceptible could be reduced over time.

Adjustments: (please compare the numbers at week 52)

Step 1: Set all the variables at minimum values and simulate

results: Number of Infected – 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.

Step 2: Increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate

results: Number of Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).

So, the increase of health policy, quarantine and travel restriction will help increase recovery, decrease confirmed cases, decrease death, but also decrease GDP.

Step 3: Increase the variables of Testing Rate to 0.4, others keep the same as step 2, and simulate

results: Number of Infected – 152 (down); Recovered – 243 (down); Cases – 1022 (up); Death – 17,625 (down); GDP – 824 (same).

So, the increase of testing rate will help to increase the confirmed cases.

Step 4: Change GDP Growth Rate to 0.14, Tourism Growth Rate to 0.02, others keep the same as step 3, and simulate

results: Number of Infected – 152 (same); Recovered – 243 (same); Cases – 1022 (same); Death – 17,625 (same); GDP – 6,632 (up).

So, the increase of GDP growth rate and tourism growth rate will helps to improve the GDP in Burnie.

Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
​Summary of Hermans Scale dynamics of grassroots innovations through parallel pathways of  transformative change Ecological Economics 2016  article (paywalled)  This is applied to  health in a subsequent insight
​Summary of Hermans Scale dynamics of grassroots innovations through parallel pathways of  transformative change Ecological Economics 2016 article (paywalled) This is applied to health in a subsequent insight
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced.  This model is based on the SIR, Susceptible,
This model is comparing healthy and sick residents in Burnie, Tasmania after the Covid-19 Outbreak in 2020. It will also show how the Burnie economy is effected by the disease, how the Government Health Policies are implemented and how they are enforced.

This model is based on the SIR, Susceptible, Infection, Recovery (or Removed) These are the three possible states related to the members of the Burnie population when a contagious decease spreads.

The Government/Government Health Policy, played a big part in the successful decrease in Covid-19 infections. The Government enforced the following.
- No travel (interstate or international)
- Isolation within the residents homes
- Social distancing by 1.5m
- Quarantine
- Non essential companies to be temporarily closed
- Limitations on public gatherings
- And limits on time and kilometers aloud to travel from ones home within a local community

This resulted in lower reported infection rates of Covid-19 and higher recovery rates.

In my opinion:
When the first case was reported the Government could have been even faster to enforce these rules to decrease the fatality rates further for the Burnie, population.  

Assumption: Government policies were only triggered when 10 cases were recorded.
Also, more cases that had been recorded effected the economic growth during this time.

Interesting Findings: In the simulation it shows as the death rates increases towards the end of the week, the rate of testing goes down. You would think that the government would have enforced a higher testing rate over the duration of this time to decrease the number of infections, exposed which would increase the recovery rates faster and more efficiently.  

Figures have been determined by the population of Burnie being 19,380 at the time of assignment.

​The law of supply and demand is a basic economic principle that explains the relationship between supply and demand for a good or service and how the interaction affects the price of that good or service. The relationship of supply and demand affects the housing market and the price of a house.
​The law of supply and demand is a basic economic principle that explains the relationship between supply and demand for a good or service and how the interaction affects the price of that good or service. The relationship of supply and demand affects the housing market and the price of a house.

A number of factors including government policy affects the law of demand and supply, which I hope my diagram illustrates

When there is a high demand for properties in a particular city or state and a lack of supply of good quality properties, the prices of houses tend to rise. When there is no demand for housing due to a weak economy and an oversupply of properties is available, the prices of houses tend to fall.
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover    Assumptions  The government has reduced both the e
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
The government has reduced both the epidemic and economic development by controlling immigration.




 This model demonstrates the intertwining relationship
between the economic contribution of industrial logging and that of adventure
tourism (dominated by mountain biking).   In terms of the revenue from industrial logging at Derby, it
is driven by demand of timber and the timber price. However, the

This model demonstrates the intertwining relationship between the economic contribution of industrial logging and that of adventure tourism (dominated by mountain biking).

In terms of the revenue from industrial logging at Derby, it is driven by demand of timber and the timber price. However, the forest resources are limited, which will put constraints on the expansion of industrial logging due to regrowth rate and existing forestation.

The tourism can bring economic benefits to Derby from hospitality and selling tickets to local adventure activities. The hospitality income can be determined by the average length of holidaying at Derby and average local pricing for accommodation, food and beverages and related essentials. Tickets sales are largely affected by the similar factors such as average expense per activity and average number of activities that tourists usually choose. Having explained the streams of possible income from the tourism, the key driver for tourism income is the desire or demand to travel. Unlikely logging, tourism is renewable and perpetual. However, logging can be conceived as a major constraint on attracting as many tourists as the economy so desires.

This is because deforestation caused by logging will diminish the natural scenery at Derby and in turn, the tourist operations and attractions based upon natural scenery. Loss of forest resources is likely to make Derby less attractive to visitors.

In short, the tourism and logging both provides economic benefits to Derby but in a competing relationship. However, the sustainability possessed by tourism cannot be rivaled by industrial logging in long term. Logging revenue reveals its advantage at inception of observed time period. Such advantage wears out over the time due to reduction in resources and sluggish regrowth. Eventually. the tourism income turns into the major player. To understand how they co-exist, please simulate the model. 

Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Description:   This is a system dynamics model of COVID-19 outbreak in Burnie which shows the process of infections and how  government responses, impact on the local economy.       First part is outbreak model, we can know that when people is infected, there are two situations. One is that he recov
Description:

This is a system dynamics model of COVID-19 outbreak in Burnie which shows the process of infections and how  government responses, impact on the local economy.  

First part is outbreak model, we can know that when people is infected, there are two situations. One is that he recovers from  treatment, but even if he recovered, the immunity loss rate increase, makes him to become infected again. The other situation is death. In this outbreak, the government's health policies (ban on non-essential trips, closure of non-essential retailers, limits on public gatherings and quarantine )  help to reduce the spread of the COVID-19 new cases. Moreover,  government legislation is dependent on  number of COVID-19 cases and testing rates. 

 Second part: the model of Govt legislation and economic impact. Gov policy can help to reduce infection rate and local economy at same way. The increase of number of COVID-19 cases has a negative impact on local Tourism industry and economic growth rate. On the other hand, Govt legislation also can be change when reported COVID-19 case are less or equal to 10.






Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.