Insight diagram
This is a clone of "Fast Fashion ISCI 360 Solutions Final submission" created by user "V B" which we are using as the foundation for an exercise in the DTU course 12100 "Quantitative sustainability".

The model takes into account clothing production and textile waste on a global scale while incorporating Vancouver's own "Fast Fashion" issue into the model.

Please refer to the notes for each variable and stock to see which links were hidden from the model.

Part 2: Our solution for the issue surrounding "Fast Fashion" focuses on increasing individuals education about sustainability and how they can help reduce negative impacts on the environment by shopping less, recycling and donating. This effect of education on sustainability is seen in the "Online Shopping" equation where the impact of "Education on Sustainability" is increased by x1.5 which impacts the entire model. Furthermore, components of the feedback loop on the right are also influenced by increasing education on sustainability and thus, those values were altered accordingly. These values were chosen arbitrarily by taking into account that doubling any value is not realistic so the change should be between x1.0 and x2.0.
Clone of Clone of Fast Fashion ISCI 360 Solutions Final Edit
Insight diagram
Standard Yardstick and Lines
Insight diagram
This model is the solution to the semiconductor problem as discussed in the class. The model exhibits goal seeking behavior, while centering around the 250 ppm defects introduced with equipment wear and tear, etc. 

The model matches real world data in terms of general trajectory, but not totally. There has to be modifications in terms of determining the real defect elimination rates, as opposed to ideal ones. That would make the model more accurate. However, for the purposes of understanding dynamics in goal seeking models, this is a good exercise.

If average defect elimination time is lesser, it leads to faster goal seeking. Any delay (>1 year) makes it impossible to seek the goal in realistic timelines.
Semiconductor Problem_ Vishwajit Vyas
Insight diagram
The Model

The model displayed depicts the interaction that the youth of Bourke has with the justice system and focuses on how factors like policing and community development affect the crime rate within this area. Bourke is a rural town that has a significant crime rate among youth. Local community members call for action to be taken in regards to this, meaning that steps must be taken to reduce the crime rate. This simple model explores how the amount of police and the investment of community development can have an effect on the town in regards to its issue of crime among youth.


Assumptions
  • Bourke's youth population is 1200, with 700 in town, 200 committing crimes and 300 already in jail
  • The amount of police, the expenditure on community development, and the domestic violence rate are the factors which have the potential to influence youth to commit crimes. The domestic violence rate is also influenced by the expenditure on community development.
  • Sporting clubs, interpersonal relationships between youth and police, and teaching trade skills all make up community expenditure
  • Activities relating to expenditure on community development run throughout the year, indicating that there is no delay where youth are not involved in these activities.
  • Every 6 months, only 60% of jailed youth are released. This may be for various factors such as committing crime in jail or being issued with lengthier sentences due to the severity of the crime(s) committed
  • 10% of youth who agree that domestic violence is an issue at home will commit crime
  • There is a delay of 1 month before youth go to jail for crime(s) committed. This model assumes that youth who have committed crime either return home (by decision or by not being caught) or go to jail. It also assumes that other punishments such as community service refer to returning back home.
  • The simulation takes place over a duration of 5 years (60 months)
  • Adults have little effect on the youth. Only where domestic violence is concerned do they play a factor within this model

How the Model Works

The model begins with the assumptions previously stated. Youth have the potential to commit a crime. 3 main variables influence this decision, including the amount of police, expenditure on community development, and domestic violence rate (which is influenced by the previous variable). These 3 variables are able to be adjusted using the relevant sliders with 0.5 indicating a low investment and 0.9 indicating a high investment. Police also have an influence on this decision. This variable is also able to be adjusted by a slider. Last of all, the domestic violence rate also contributes to this decision and this variable is negatively influenced by community development.

Once a youth has committed a crime they are either convicted and sent to jail or return back to town. The conviction rate is also influenced by the amount of police in town, as youth are more likely to get caught and thus jailed. Once again, the Police variable is able to be adjusted via the slider. This process takes a month.

From here, youth typically spend 6 months in jail. After this time period 60% are released while the remaining 40% remain in jail either due to lengthier sentences for more severe crimes or due to incidents within jail. The process then repeats.


Parameter Settings and Results
  • Initially there is a state of fluctuation within this model. It may be a good idea to ignore it and pay attention to how variables change over time from their initial state
  • Increasing the amount of police will raise the amount of people jailed and decrease crime
  • Increasing the community development variables from a minimal investment (i.e. set at 0.5) to a high investment (i.e. set at 0.9) will reduce both the crime rate and the conviction rate. It is worth noting that the community development variable also influences the domestic violence rate variable which also has an effect on the results
  • If only 2 of the 3 community development variables have a high investment then there is not much effect on the crime rate or jail rate. All 3 variables should be given the same level of investment to give us a desired outcome
  • The model does allow for a maximum of 40 police (as we do not want to spend more money on police than we already have in the past), as well as the maximum investment for community development. When choosing settings it may be necessary to ponder if it is financially realistic to maintain both a large number of police as well as investing heavily into community development
Justice Reinvestment In Bourke - 44560753
Insight diagram

This map is a WIP derived from the MIT D-memo 4641 presentation by Nelson Repenning 1996 and the paper "Nobody Ever Gets Credit for Fixing Problems that Never Happened: Creating and Sustaining Process Improvement" by Nelson P. Repenning and John D Sterman. http://bit.ly/jCXGKL See Insight 9781 for a simulation of this model. This map adds additional features mentioned in the article to the bare bones simulation in IM-9781

The Improvement Paradox Map WIP
Insight diagram
This version of the CAPABILITY DEMONSTRATION model has been further calibrated (additional calibration phases will occur as better standardized data becomes available).  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further de-abstracted and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
Version 6A: Calibrated Student-Home-Teachers-Classroom
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
Figure 4-4 Population
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
WIP for planning  some relevant online M&S Learning Communities for Health
Online Health Modelling and Simulation Communities
Insight diagram
Summary of  Ch 22 of Mitchell Wray and Watts Textbook see IM-164967 for book overview
Fiscal Space and Fiscal Sustainability
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
Based on the article, designing a realistic stock and flow model.
Lake eutrophication
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions