Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

 Aquí tenemos un modelo SEIR básico e investigaremos qué cambios serían apropiados para modelar el Coronavirus 2019

Aquí tenemos un modelo SEIR básico e investigaremos qué cambios serían apropiados para modelar el Coronavirus 2019

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment
COVID-19 Outbreak in Burnie Tasmania Simulation Model    Introduction:     This model simulates the COVID-19 outbreak situation in Burnie and how the government responses impact local economy. The COVID-19 pandemic spread is influenced by several factors including infection rate, recovery rate, deat
COVID-19 Outbreak in Burnie Tasmania Simulation Model

Introduction:

This model simulates the COVID-19 outbreak situation in Burnie and how the government responses impact local economy. The COVID-19 pandemic spread is influenced by several factors including infection rate, recovery rate, death rate and government's intervention policies.Government's policies reduce the infection spread and also impact economic activities in Burnie, especially its tourism and local businesses.   

Assumptions: 

- This model was built based on different rates, including infection rate, recovery rate, death rate, testing rate and economic growth rate. There can be difference between 
this model and reality.

- This model considers tourism and local business are the main industries influencing local economy in Burnie.

- Government's intervention policies will positive influence on local COVID-19 spread but also negative impact on local economic activity.

- When there are more than 10 COVID-19 cases confirmed, the government policies will be triggered, which will brings effects both restricting the virus spread and reducing local economic growth.

- Greater COVID-19 cases will negatively influence local economic activities.

Interesting Insights:

Government's vaccination policy will make a important difference on restricting the infection spread. When vaccination rate increase, the number of deaths, infected people and susceptible people all decrease. This may show the importance of the role of government's vaccination policy.

When confirmed cases is more than 10, government's intervention policies are effective on reducing the infections, meanwhile local economic activities will be reduced.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

 Here we have modified the SIR model of Insight 584 by adding an additional stock of Exposed people, who become Infective after an incubation period.

Here we have modified the SIR model of Insight 584 by adding an additional stock of Exposed people, who become Infective after an incubation period.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.