A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

The VANET handles situation of parking in crowded areas. It takes into account the parking capacity, arrival rate of cars, already parked cars , while making decisions.  The description of states are :   1. Cruising : State of cars which are moving out of parking area, but are still inside the parki
The VANET handles situation of parking in crowded areas. It takes into account the parking capacity, arrival rate of cars, already parked cars , while making decisions.
 The description of states are :


1. Cruising : State of cars which are moving out of parking area, but are still inside the parking lot.

2.Parked : State of cars which are already parked.

3. Just entered : State of cars which have just entered the parking lot and are searching for parking position.


 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

3 weeks ago
From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017  video .   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
 This model is a classic instance of an Erlang Queuing Process.     We have the entities:  - A population of cars which start off in a "crusing" state;  - At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simu
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "crusing" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
 This model is a classic instance of an Erlang Queuing Process.     We have the entities:  - A population of cars which start off in a "crusing" state;  - At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simu
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "crusing" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

 This model is a classic instance of an Erlang Queuing Process.     We have the entities:  - A population of cars which start off in a "crusing" state;  - At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simu
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "crusing" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.