Create an Insight Maker account to start building models. Insight Maker is completely free.


Start Now

Insight Maker runs in your web-browser. No downloads or plugins are needed. Start converting your ideas into your rich pictures, simulation models and Insights now. Features

Simulate

Explore powerful simulation algorithms for System Dynamics and Agent Based Modeling. Use System Dynamics to gain insights into your system and Agent Based Modeling to dig into the details. Types of Modeling

Collaborate

Sharing models has never been this easy. Send a link, embed in a blog, or collaborate with others. It couldn't be simpler. More

Free & Open

Build your models for free. Share them with others for free. Harness the power of Insight Maker for free. Open code mean security and transparency. More


Explore What Others Are Building

Here is a sample of public Insights made by Insight Maker users. This list is auto-generated and updated daily.



 Ce modèle simule la  production de biomasse  par une  cohorte
d’organismes benthiques , inspiré d’un cas réel : le gastéropode marin  Nassarius
reticulatus , fréquent sur les estrans vaseux d’Europe. 
Ce modèle s’inscrit dans une logique  fonctionnelle , et complète les
approches démographiques c

Ce modèle simule la production de biomasse par une cohorte d’organismes benthiques, inspiré d’un cas réel : le gastéropode marin Nassarius reticulatus, fréquent sur les estrans vaseux d’Europe.
Ce modèle s’inscrit dans une logique fonctionnelle, et complète les approches démographiques classiques (exponentielle, logistique, Leslie), en intégrant une autre dimension essentielle de l’écologie : la production secondaire.

Contrairement aux modèles précédents centrés uniquement sur le nombre d’individus (N), ce modèle prend en compte la croissance individuelle en poids (W), et son interaction avec la survie de la cohorte pour estimer la production de biomasse totale.
Chaque individu n’est pas seulement un effectif, mais aussi une quantité de matière, une composante mesurable du flux d’énergie dans l’écosystème.

Les Composants du Modèle :

Variables d’état (Stocks) :

  • N : Nombre d’individus vivants dans la cohorte.
  • : Poids moyen des individus (grammes).
  • Instant Biomass : Biomasse vivante instantanée de la cohorte, calculée comme N × W
  • Secondary Production : Production cumulée de biomasse (incluant celle produite par les survivants et par les morts).

Flux :

  • Gross Gain : Quantité de biomasse produite par la croissance individuelle à chaque pas de temps (N × variation de W).
  • Gross Loss : Biomasse perdue via la mort des individus, c’est-à-dire le poids moyen multiplié par les décès.
  • Production (flux) : Biomasse totale produite, incluant celle des survivants et des morts (Gross gain).
  • Net Variation : Variation nette de la biomasse vivante (Gross gain − Gross loss), soit l'accumulation réelle dans la population.

Paramètres modifiables :

  • Initial N : Nombre initiale de la cohorte (individus).
  • Initial W : Poids moyen initial (grammes).
  • d : Taux de mortalité (proportion d’individus mourant à chaque pas de temps).
  • g : Taux de croissance pondérale des individus.
  • Wmax : Poids maximal asymptotique moyen (croissance indéterminée).

Remarque :
La relation entre taille et masse corporelle est supposée intégrée dans l'équation de croissance. La courbe de poids moyen (W) représente donc déjà l'évolution allométrique sans avoir à la modéliser séparément.

Indicateurs produits :

  • Production secondaire nette cumulée : quantité totale de biomasse produite au cours de la vie de la cohorte.
  • Biomasse instantanée : stock de matière vivante à un instant donné.
  • Moment du pic de production : période durant laquelle la cohorte contribue le plus aux flux trophiques.

Votre Mission d'Exploration :

Votre objectif est de vous mettre dans la peau d’un écologue benthique étudiant le fonctionnement d’un écosystème vaseux.

  1. Simulez la dynamique par défaut pour comprendre l’interaction entre croissance individuelle et mortalité dans la production.
  2. Faites varier le taux de mortalité : à quel moment le coût des pertes excède-t-il la production ?
  3. Augmentez ou diminuez la vitesse de croissance : en quoi cela modifie-t-il la quantité totale de biomasse produite ?
  4. Identifiez le moment de production maximale et reliez-le à l’intérêt écologique de la cohorte pour les niveaux trophiques supérieurs.
  5. Comparez différents scénarios (forte mortalité / croissance lente vs. faible mortalité / croissance rapide) pour identifier les conditions d’une production optimale.

Cliquez sur "SIMULATE" et explorez la dynamique de votre cohorte benthique !
Ce modèle vous permet de relier la biologie individuelle à la structure des flux dans les écosystèmes, une étape clé en écologie fonctionnelle.

 

There are about fifteen known archetypes with an interesting set of relationships among them.  Video    There is a new version of this model at   Frequently Recurring Structures
There are about fifteen known archetypes with an interesting set of relationships among them.

There is a new version of this model at

Frequently Recurring Structures

La situación modelada expresa el crecimiento de las ventas impulsadas por la motivación y productividad, pero es frenada por el tamaño del nicho de mercado.
La situación modelada expresa el crecimiento de las ventas impulsadas por la motivación y productividad, pero es frenada por el tamaño del nicho de mercado.
Clarify Purpose: To see forest rise/decline over 30 years. Reduce deforestation (decline). Identify the change driver, tipping points and leverage points. Agriculture expansion and natural forest loss by data shows significant decline in simulation.   Intervention in Agriculture expansion has the po
Clarify Purpose: To see forest rise/decline over 30 years. Reduce deforestation (decline). Identify the change driver, tipping points and leverage points.
Agriculture expansion and natural forest loss by data shows significant decline in simulation. 
Intervention in Agriculture expansion has the potential to influence and mitigate land system change.
3 weeks ago
 From Jay Forrester 1971 Book  World Dynamics , the earlier, simpler version of the  World 3   Limits to Growth  Model. adapted from Mark Heffernan's ithink version at  Systemswiki .  An element of Perspectives: The Foundation of Understanding and Insights for Effective Action. Register at  http://w

From Jay Forrester 1971 Book World Dynamics, the earlier, simpler version of the World 3 Limits to Growth Model. adapted from Mark Heffernan's ithink version at Systemswiki.

An element of Perspectives: The Foundation of Understanding and Insights for Effective Action. Register at http://www.systemswiki.org/