Create an Insight Maker account to start building models. Insight Maker is completely free.


Start Now

Insight Maker runs in your web-browser. No downloads or plugins are needed. Start converting your ideas into your rich pictures, simulation models and Insights now. Features

Simulate

Explore powerful simulation algorithms for System Dynamics and Agent Based Modeling. Use System Dynamics to gain insights into your system and Agent Based Modeling to dig into the details. Types of Modeling

Collaborate

Sharing models has never been this easy. Send a link, embed in a blog, or collaborate with others. It couldn't be simpler. More

Free & Open

Build your models for free. Share them with others for free. Harness the power of Insight Maker for free. Open code mean security and transparency. More


Explore What Others Are Building

Here is a sample of public Insights made by Insight Maker users. This list is auto-generated and updated daily.

Causal loop representations of macroeconomics taken from the System Dynamics literature contrasted with Forrester's main analysis of social and business organization layers See also Saeed's Forrester Economics  IM-183285
Causal loop representations of macroeconomics taken from the System Dynamics literature contrasted with Forrester's main analysis of social and business organization layers See also Saeed's Forrester Economics IM-183285
5 2 months ago
 This model simulates the impact of deforestation, illegal logging, and reforestation on forest cover in Palawan and its cascading effects on biodiversity. Forest loss reduces biodiversity health, contributing to wildlife population decline. The system highlights the importance of forest management
This model simulates the impact of deforestation, illegal logging, and reforestation on forest cover in Palawan and its cascading effects on biodiversity. Forest loss reduces biodiversity health, contributing to wildlife population decline. The system highlights the importance of forest management in sustaining ecosystem integrity.
The limits to growth structure is based on the basic growth structure. And, as should be obvious, nothing grows forever as growth requires resources. Those required resources become a limits to growth. See also  Archetypes .   Video
The limits to growth structure is based on the basic growth structure. And, as should be obvious, nothing grows forever as growth requires resources. Those required resources become a limits to growth. See also Archetypes.
62 6 months ago
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process.   By adjusting the sliders below you can    observe the work process  without  any work in process limitations ( WIP Limits ),   with process step specific WIP Limits* (
This simulation allows you to compare different approaches to influence flow, the Flow Times and the throughput of a work process.

By adjusting the sliders below you can 
  • observe the work process without any work in process limitations (WIP Limits), 
  • with process step specific WIP Limits* (work state WIP limits), 
  • or you may want to see the impact of the Tameflow approach with Kanban Token and Replenishment Token 
  • or see the impact of the Drum-Buffer-Rope** method. 
* Well know in (agile) Kanban
** Known in the physical world of factory production

The "Tameflow approach" using Kanban Token and Replenishment Token as well as the Drum-Buffer-Rope method take oth the Constraint (the weakest link of the work process) into consideration when pulling in new work items into the delivery "system". 

You can also simulate the effects of PUSH instead of PULL. 

Feel free to play around and recognize the different effects of work scheduling methods. 

If you have questions or feedback get in touch via twitter @swilluda

The work flow itself
Look at the simulation as if you would look on a kanban board

The simulation mimics a "typical" software delivery process. 

From left to right you find the following ten process steps. 
  1. Input Queue (Backlog)
  2. Selected for work (waiting for analysis or work break down)
  3. Analyse, break down and understand
  4. Waiting for development
  5. In development
  6. Waiting for review
  7. In review
  8. Waiting for deployment
  9. In deployment
  10. Done
 This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:     Koot, M., & Wijnhoven, F. (2021). Usage impa
This forecasting model can be used to predict global data center electricity needs, based on understanding usage growth. Please note that the corresponding problem description, model developments, and results are discussed in the following paper:

Koot, M., & Wijnhoven, F. (2021). Usage impact on data center electricity needs: A system dynamic forecasting model. Applied Energy, 291, 116798. DOI: https://doi.org/10.1016/j.apenergy.2021.116798.
A visual look at using technology in school based on the article:     Levin, B. B., & Schrum, L. (2013). Using systems thinking to leverage technology for school improvement: Lessons learned from award-winning secondary Schools/Districts.  Journal of Research on Technology in Education,   46 (1)
A visual look at using technology in school based on the article:

 Levin, B. B., & Schrum, L. (2013). Using systems thinking to leverage technology for school improvement: Lessons learned from award-winning secondary Schools/Districts. Journal of Research on Technology in Education, 46(1), 29-51.