This simulation is about the covid 19 virus and its ability to evolve and mutate in order to survive killing humans in the process. Here you will see that the infected doesn't stop however the number of recovery is increasing at a higher speed and the susceptible increases slowly.
This simulation is about the covid 19 virus and its ability to evolve and mutate in order to survive killing humans in the process. Here you will see that the infected doesn't stop however the number of recovery is increasing at a higher speed and the susceptible increases slowly.
The System Dynamics Model presents the the COVID-19 status in Сhina
The System Dynamics Model presents the the COVID-19 status in Сhina
 Ausbreitung von SARS-CoV-19 in verschiedenen Ländern - bitte passen Sie die Variablen über die Schieberegler weiter unten entsprechend an  Italien      ältere Bevölkerung (>65): 0,228     Faktor der geschätzten unentdeckten Fälle: 0,6     Ausgangsgröße der Bevölkerung: 60 000 000     hoher Blutd
Ausbreitung von SARS-CoV-19 in verschiedenen Ländern
- bitte passen Sie die Variablen über die Schieberegler weiter unten entsprechend an

Italien

    ältere Bevölkerung (>65): 0,228
    Faktor der geschätzten unentdeckten Fälle: 0,6
    Ausgangsgröße der Bevölkerung: 60 000 000
    hoher Blutdruck: 0,32 (gbe-bund)
    Herzkrankheit: 0,04 (statista)
    Anzahl der Intensivbetten: 3 100


Deutschland

    ältere Bevölkerung (>65): 0,195 (bpb)
    geschätzte unentdeckte Fälle Faktor: 0,2 (deutschlandfunk)
    Ausgangsgröße der Bevölkerung: 83 000 000
    hoher Blutdruck: 0,26 (gbe-bund)
    Herzkrankheit: 0,2-0,28 (Herzstiftung)
   
Anzahl der Intensivbetten: 5 880


Frankreich

    ältere Bevölkerung (>65): 0,183 (statista)
    Faktor der geschätzten unentdeckten Fälle: 0,4
    Ausgangsgröße der Bevölkerung: 67 000 000
    Bluthochdruck: 0,3 (fondation-recherche-cardio-vasculaire)
    Herzkrankheit: 0,1-0,2 (oecd)
   
Anzahl der Intensivbetten: 3 000


Je nach Bedarf:

    Anzahl der Begegnungen/Tag: 1 = Quarantäne, 2-3 = soziale Distanzierung , 4-6 = erschwertes soziales Leben, 7-9 = überhaupt keine Einschränkungen // Vorgabe 2
    Praktizierte Präventivmassnahmen (d.h. sich regelmässig die Hände waschen, das Gesicht nicht berühren usw.): 0.1 (niemand tut etwas) - 1 (sehr gründlich) // Vorgabe 0.8
    Aufklärung durch die Regierung: 0,1 (sehr schlecht) - 1 (sehr transparent und aufklärend) // Vorgabe 0,9
    Immunitätsrate (aufgrund fehlender Daten): 0 (man kann nicht immun werden) - 1 (wenn man es einmal hatte, wird man es nie wieder bekommen) // Vorgabe 0,4


Schlüssel

    Anfällige: Menschen sind nicht mit SARS-CoV-19 infiziert, könnten aber infiziert werden
    Infizierte: Menschen sind infiziert worden und haben die Krankheit COVID-19
    Geheilte: Die Menschen haben sich gerade von COVID-19 erholt und können es in diesem Stadium nicht mehr bekommen
    Tote: Menschen starben wegen COVID-19
    Immunisierte: Menschen wurden immun und können die Krankheit nicht mehr bekommen
    Kritischer Prozentsatz der Wiederherstellung: Überlebenschance ohne spezielle medizinische Behandlung



        Model description:     This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania. It also tell us the impact of economic policies on outbreak models and economic growth.       Variables:    The simulation takes into account the following variables and its adjusting ra

Model description:

This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania. It also tell us the impact of economic policies on outbreak models and economic growth.

 

Variables:

The simulation takes into account the following variables and its adjusting range: 

 

On the left of the model, the variables are: infection rate( from 0 to 0.25), recovery rate( from 0 to 1), death rate( from 0 to 1), immunity loss rate( from 0 to 1), test rate ( from 0 to 1), which are related to Covid-19.

 

In the middle of the model, the variables are: social distancing( from 0 to 0.018), lock down( from 0 to 0.015), quarantine( from 0 to 0.015), vaccination promotion( from 0 to 0.019), border restriction( from 0 to 0.03), which are related to governmental policies.

 

On the right of the model, the variables are: economic growth rate( from 0 to 0.3), which are related to economic growth.

 

Assumptions:

(1) The model is influenced by various variables and can produce different results. The following values based on the estimation, which differ from actual values in reality.

 

(2) Here are just five government policies that have had an impact on infection rates in epidemic models. On the other hand, these policies will also have an impact on economic growth, which may be positive or negative.

 

(3) Governmental policy will only be applied when reported cases are 10 or more. 

 

(4) This model lists two typical economic activities, namely e-commerce and physical stores. Government policies affect these two types of economic activity separately. They together with economic growth rate have an impact on economic growth.

 

Enlightening insights:

(1) In the first two weeks, the number of susceptible people will be significantly reduced due to the high infection rate, and low recovery rate as well as government policies. The number of susceptible people fall slightly two weeks later. Almost all declines have a fluctuating downward trend.

 

(2) Government policies have clearly controlled the number of deaths, suspected cases and COVID-19 cases.

 

(3) The government's restrictive policies had a negative impact on economic growth, but e-commerce economy, physical stores and economic growth rate all played a positive role in economic growth, which enabled the economy to stay in a relatively stable state during the epidemic.

    The Binary Adder:         Andy Long  Spring, 2020 - Year of Covid-19​    Having constructed a  working example of a finite state machine  (FSM), from Gersting's 7th edition (p. 730, Example 29), I decided to create a more useful one -- a binary adder (p. 732). It works!         Subject to these
The Binary Adder:

Andy Long
Spring, 2020 - Year of Covid-19​

Having constructed a working example of a finite state machine (FSM), from Gersting's 7th edition (p. 730, Example 29), I decided to create a more useful one -- a binary adder (p. 732). It works!

Subject to these rules:
  1. Your two binary numbers should start off the same length -- pad with zeros if necessary. Call this length L.
  2. Now pad your two binary numbers with three extra 0s at the end; this lets the binary-to-decimal conversion execute.
  3. numbers are entered from ones place (left to right).
  4. In Settings, choose "simulation start" as 1, your "simulation length" as L+2 -- two more than the length of your initial input number vectors. (I wish that the Settings issues could be set without having to explicitly change it each time -- maybe it can, but I don't know how.)
Be attentive to order -- start with 1s place, 2s place, 4s, place, etc., and your output answer will be read in the same order.

To understand why we need three additional inputs of 0s:
  1. For the useless first piece of output -- so n -> n+1
  2. For the possibility of adding two binary numbers and ending up with an additional place we need to force out: 111 + 111 = 0 1 1 1
  3. For the delay in computing the decimal number: it reads the preceding output to compute the decimal value.