COVID-19 outbreak in Burnie Tasmania Simulation Model         Introduction        This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be
COVID-19 outbreak in Burnie Tasmania Simulation Model

Introduction

This model simulates how COVID-19 outbreak in Burnie and how the government responses influence the economic community.  Government responses are based on the reported COVID-19 cases amount, whcih is considered to be based on testing rate times number of people who are infected minus those recovered from COVID-19 and dead.
Government interventions include the implement of healthy policy, border surveillance, quarantine and travel restriction. After outbreak, economic activities are positively affected by the ecommerce channel development and normal economic grwoth, while the unemployement rate unfortunately increases as well. 

Assumption
  • Enforcing government policies reduce both infection and economica growth.                                                                                                         
  • When there are 10 or greater COVID-19 cases reported, the governmwnt policies are triggered.                                                          
  • Greater COVID-19 cases have negatively influenced the economic activities.                                                                                             
  • Government policies restict people's activities socially and economically, leading to negative effects on economy.                                          
  • Opportunities for jobs are cut down too, making umemployment rate increased.                                                                                   
  • During the outbreak period, ecommerce has increased accordingly because people are restricted from going out.                                  
Interesting insights

An increase in vaccination rate will make difference on reduing the infection. People who get vaccinated are seen to have higher immunity index to fight with COVID-19. Further research is needed.

Testing rate is considered as critical issue to reflect the necessity of government intervention. Higher testing rate seems to boost immediate intervention. Reinforced policies can then reduce the spread of coronvirus but absoluately have negative impacts on economy too.
Description:   This is a system dynamics model of COVID-19 outbreak in Burnie which shows the process of infections and how  government responses, impact on the local economy.       First part is outbreak model, we can know that when people is infected, there are two situations. One is that he recov
Description:

This is a system dynamics model of COVID-19 outbreak in Burnie which shows the process of infections and how  government responses, impact on the local economy.  

First part is outbreak model, we can know that when people is infected, there are two situations. One is that he recovers from  treatment, but even if he recovered, the immunity loss rate increase, makes him to become infected again. The other situation is death. In this outbreak, the government's health policies (ban on non-essential trips, closure of non-essential retailers, limits on public gatherings and quarantine )  help to reduce the spread of the COVID-19 new cases. Moreover,  government legislation is dependent on  number of COVID-19 cases and testing rates. 

 Second part: the model of Govt legislation and economic impact. Gov policy can help to reduce infection rate and local economy at same way. The increase of number of COVID-19 cases has a negative impact on local Tourism industry and economic growth rate. On the other hand, Govt legislation also can be change when reported COVID-19 case are less or equal to 10.






 Based on this particular model created by Lutfi Andriyanto and Aulia Nur Fajriyah: https://insightmaker.com/insight/2wxxIeiWJsHNFGNH6cf6ke/SEIR     Updated by (Kelompok 2):  Daffa Muhammad Romero	20/456363/TK/50493  Iskan Mustamir			20/456367/TK/50497  Tasya Nafisah Kamal		20/460569/TK/51158  Hervi

Based on this particular model created by Lutfi Andriyanto and Aulia Nur Fajriyah: https://insightmaker.com/insight/2wxxIeiWJsHNFGNH6cf6ke/SEIR


Updated by (Kelompok 2):

Daffa Muhammad Romero 20/456363/TK/50493

Iskan Mustamir 20/456367/TK/50497

Tasya Nafisah Kamal 20/460569/TK/51158

Hervi Nur Rahmadien 20/463601/TK/51593

 Италиядағы COVID-19 экосистемасы
Италиядағы COVID-19 экосистемасы
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

  Overview:
  

 The
COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak,
the impacts of government policy on both the COVID-19 outbreak and the GDP
growth in Burnie.  

  Assumptions:  

 We set some
variables at fix rates, including the immunity loss rate, recovery rate, de

Overview:

The COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak, the impacts of government policy on both the COVID-19 outbreak and the GDP growth in Burnie.

Assumptions:

We set some variables at fix rates, including the immunity loss rate, recovery rate, death rate, infection rate and case impact rate, as they usually depend on the individual health conditions and social activities.

It should be noticed that we set the rate of recovery, which is 0.7, is higher than that of immunity loss rate, which is 0.5, so, the number of susceptible could be reduced over time.

Adjustments: (please compare the numbers at week 52)

Step 1: Set all the variables at minimum values and simulate

results: Number of Infected – 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.

Step 2: Increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate

results: Number of Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).

So, the increase of health policy, quarantine and travel restriction will help increase recovery, decrease confirmed cases, decrease death, but also decrease GDP.

Step 3: Increase the variables of Testing Rate to 0.4, others keep the same as step 2, and simulate

results: Number of Infected – 152 (down); Recovered – 243 (down); Cases – 1022 (up); Death – 17,625 (down); GDP – 824 (same).

So, the increase of testing rate will help to increase the confirmed cases.

Step 4: Change GDP Growth Rate to 0.14, Tourism Growth Rate to 0.02, others keep the same as step 3, and simulate

results: Number of Infected – 152 (same); Recovered – 243 (same); Cases – 1022 (same); Death – 17,625 (same); GDP – 6,632 (up).

So, the increase of GDP growth rate and tourism growth rate will helps to improve the GDP in Burnie.

  INTRODUCTION
  

  COVID-19  

 Coronavirus which was named COVID-19 is a
respiratory disease which affects the lungs of the infected person and thus
making such people vulnerable to other diseases such as pneumonia. It was first
discovered in Wuhan China in December 2019 and since then has spread

INTRODUCTION

COVID-19

Coronavirus which was named COVID-19 is a respiratory disease which affects the lungs of the infected person and thus making such people vulnerable to other diseases such as pneumonia. It was first discovered in Wuhan China in December 2019 and since then has spread across the world affecting more than 40 million people from which over one million have died.

In the early discovery of the COVID-19, there were measures that were put in place with the help World Health Organization (WHO). They recommended a social distance of 1.5 meters to 2 meters to curb the spread since the scientist warned that COVID-19 can be carried in the droplets when someone breathes or cough. Another measure which was advised by WHO was wearing of mask, especially when people are in group. Wearing of mask would ensure that someone’s droplets do not leave their mouth or nose when they breathe or cough. It also help one from breathing in the virus which believed to be contagious and airborne.

The World Health Organization also advised on washing of the hand and avoiding frequent touching of the face. People mostly use their hand to touch surfaces which mad their hand the greatest harbor of the disease. Therefore, washing hands with soap will kill and wash away the virus from the hands. Avoiding touching of face also will prevent people from contracting the disease since the virus is believed to enter the body through openings such as eye, nose and mouth.

Another measure as a precaution from contracting the disease was to avoid hand shaking, hugging, kissing and any other thing which would bring people together. These were measures put to ensure that COVID-19 do not move from one person to another because of its airborne nature and the fact that it can be carried from the mouth or nose droplets.

Healthcare workers, in most of the countries, were provided with Personal Protective Equipment (PPEs) which helped them to protect themselves from contracting the virus. Healthcare workers were at the forefront in combating the disease since they were the people receiving the sick, including the ones with the virus. This exposed them to COVID-19 more than anyone hence more care was needed for them. Their PPEs comprised of white overall covering the whole body from head to toes. It also includes face mask and googles worn to prevent anything getting in their eyes. Their hands also were covered with gloves which were removed occasionally to avoid concentration of the virus on one glove.

COVID-19 affected many economies across the world as it greatly affected the human economic activities across the world. Due to the nature and how it spread, COVID-19 lead many countries to lockdown the country as we know it. Travelling was stopped as many countries feared the surge of the virus due to many people travelling form the countries which are already greatly affected. Another reason which travelling was hampered was due to the fact that the virus could spread among the travelers in an airplane. There were no proper measures to ensure social distance in the airplane and many people feared travelling from fear of contracting the disease.

This greatly affected the economy of many countries including great economies like USA. Tourism industry was the one affected the most as many country mostly depend on foreign travelers as their tourist. Many countries do not have proper domestic tourism structure and therefore depend on visitors who travels from foreign countries. Such countries have their economies greatly affected since the earnings from tourism either gone down or was not there at all.

Apart from locking down the country from foreigners, many major cities across the world were under lockdown. This means that even the citizens of the country were neither allowed in or out of the city. This restricted movement of people affecting greatly the human economic activities as many businesses were closed down especially transport businesses. The movement of goods from one places to another was affected making business difficult to carry out. Many people who dealt in perishable agricultural products count losses as their farm produced were destroyed because of lack of wider market. Some countries banned some businesses such as importing second hand clothes since it was believed that they could harbor the virus. Most of the meeting places such as sporting events and pubs were closed down affecting greatly the people who were involved in such businesses.

Across the world, schools were closed. Schools contain students in large numbers which could affect many students across the world. Learning was temporary stopped as different countries were finding ways of curbing the virus.

Scientist are busy like bees across the world to find the vaccine for the diseases that have ravage many countries and above all, they are trying to find the cure. Many countries have carried out their trial of vaccines with the hope to find an effective vaccine for the virus.

Meanwhile it is necessary to find ways by which the virus can be controlled so that it doesn’t spread to a point where it come out of control. Some of the measures put by the WHO has been highlighted above, but these measures need to be studied to ensure that measures which are more effective are affected at great heights. I therefore, have created a model in Insight Maker to check how these measures prove their effectiveness over time.

  Overview:   Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.      Variables   The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): D

Overview:

Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.


Variables

The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate etc. 


Assumptions:

From the model, it is apparent that government health policies directly affect the economic output of Burnie. A better health policy has proven to have a better economic condition for Burnie and verse versa.


In the COVID-19 model, some variables are set at fixed rates, including the immunity loss rate, recovery rate, death rate, infection rate, and case impact rate, as this is normally influenced by the individual health conditions and social activities.

Moving forward, we decided to set the recovery rate to 0.7, which is a rate above the immunity loss rate of 0.5, so, the number of susceptible could be diminished over time.


Step 1: Try to set all value variables at their lowest point and then stimulate. 

 

Outcome: the number of those Infected are– 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.


Step 2: Try to increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate


Outcome: The number of those Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).


With this analysis, it is obvious that the increase of health policy, quarantine, and travel restriction will assist in increase recovery rate, a decrease in confirmed cases, a reduction in death cases or fatality rate, but a decrease in Burnie GDP.


Step 3: Enlarge the Testing Rate to 0.4, variable, others, maintain the same as step 2, and simulate


Outcome: It can be seen that the number of Infected is down to – 152; those recovered down to – 243; overall cases up to – 1022; those that died down to–17,625; while the GDP remains – 824.


In this step, it is apparent that the increase of testing rate will assist to increase the confirmed cases.


Step 4: Try to change the GDP Growth Rate to 0.14, then Tourism Growth Rate to 0.02, others keep the same as step 3, and then simulate the model


Outcome: what happens is that the Infected number – 152 remains the same; Recovered rate– 243 the same; Number of Cases – 1022 (same); Death – 17,625 (same); but the GDP goes up to– 6,632. 


This final step made it obvious that the increase of GDP growth rate and tourism growth rate will help to improve the overall GDP performance of Burnie's economy.

  Begründung der Design-Entscheidungen  
   
 Meine Simulation zeigt den Corona (COVID-19) und die Ausbreitung in Deutschland. Für die erste Berechnung habe ich die Fallzahlen und die Steigung von verschiedenen Ländern, aber im speziellen von Deutschland analysiert. Die Daten habe ich hierbei aus fo

Begründung der Design-Entscheidungen


Meine Simulation zeigt den Corona (COVID-19) und die Ausbreitung in Deutschland. Für die erste Berechnung habe ich die Fallzahlen und die Steigung von verschiedenen Ländern, aber im speziellen von Deutschland analysiert. Die Daten habe ich hierbei aus folgender Tabelle entnommen: https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Confirmed.csv. Für Deutschland habe ich so einen Anstiegsfaktor von ca. 1,35 im Vergleich zum Vortag ermittelt. Dies hat sich allerdings nur kurz gehalten, da ich mich für meinen Rest der Modellierung auf eine Studie des „imperial college london“ gestützt habe, die Infektionszeiten habe ich einer Studie der Deutschen Gesellschaft für Epidemiologie genutzt. Hierbei war dann der Ausbreitungsfaktor R0 interessant. Dieser wurde hier mit 2,4 angegeben, was bedeutet, dass jeder Infizierte im Schnitt 2,4 neue Leute infiziert. Das ganze habe ich dann noch aufgebrochen in Kontakte/Tag und einen Ansteckungsfaktor. Für Kontakte pro Tag habe ich ohne Einschränkungen 8 Kontakte/Tag angenommen. Da man laut Studie für 3 Tage Infektiös ist, hat man in der Zeit 24 Kontakte. Die Ansteckungswahrscheinlichkeit (ohne Einschränkungen) berechnet sich also wie folgt:

. Hierbei ist x dann die Ansteckungswahrscheinlichkeit die dann bei 0,1 liegt. Dieser Ansteckungsfaktor wird dann mit der Anzahl an ansteckenden Menschen malgenommen. Die Ansteckungen die sich pro Tag ergeben lassen sich also mit der Formel 

ansteckende Menschen * Ansteckungsfaktor ausrechnen. 

Es muss allerdings für die langfristige Betrachtung auch noch der Faktor der Herden-Immunität mit einberechnet werden. Hierfür habe ich die Variable der nicht-Immunität noch in die Ansteckungen pro Tag eingerechnet. Diese berechnet sich wie folgt:

[nicht Immun/Gesunde]/82000000. Die 82000000 stehen hier für die Bevölkerung Deutschlands. Wenn man diesen Faktor jetzt einfach noch zu dem Ansteckungsfaktor dazurechnet, ist der Faktor der Herden-Immunität auch mit einberechnet


Für meine Simulation habe ich außerdem noch Menschen mit dem Virus berücksichtigt, die aufgrund von milden Symptomen nicht in Quarantäne sind, für die ich angenommen habe, dass diese auch noch ansteckend sind. Aus Gründen der Einfachheit habe ich diese dann einfach dazugezählt, durch die Tage in denen sie ansteckend sind geteilt. 

Damit die Zeit bedingten Funktionen bei der Erst-Infektion funktionieren habe ich zudem noch den Stock „Virus“ angelegt, welcher mit dem Flow „erstInfektion“ simuliert wird. 

Die infizierten behalten dann für eine Zeit von 5,5 Tagen (Dauer aus der Studie übernommen) ihren Virus und sind noch nicht infektiös. Dementsprechend die Flow-Funktion: Delay([Infiziert_0], {5.5 Days})

Anschließend werden sie für 3 Tage infektiös und infizieren gesunde Menschen aus der Bevölkerung. Sie zählen dann zu den ansteckenden Menschen.

Nach den 3 infektiösen Tagen sind dann 60% der Menschen in Quarantäne, bei 40% der erkrankten sind die Symptome allerdings so niedrig, dass diese ihr Leben ohne Quarantäne weiterführen und deshalb noch ansteckend sind, da sie das Virus nicht bemerken. Deshalb ergeben sich die beiden folgenden Formeln:

Delay([Infiziert_1], {[infektiöse Dauer] Days})*0.4

Delay([Infiziert_1], {[infektiöse Dauer] Days})*0.6

Anschließend erfolgt die Aufteilung in die unterschiedlichen Verläufe. Hierfür habe ich die Tabelle der Studie für die Symptomatischen Verläufe genommen, und die Wahrscheinlichkeiten auf die deutsche Bevölkerung und ihr demographisches Profil übertragen 

(Quelle: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf, Zugriff: 19.03.2020)


Bevölkerungsgruppe

Menschen in der Gruppe

Menschen im Krankenhaus

Intensivstation

0-9

6.935.000

6.935

346

10-19

7.491.000

22.473

1.123

20-29

9.431.000

113.172

5.659

30-39

10.877.000

348.064

17.403

40-49

10.080.000

493.920

31.117

50-59

14.642.000

1.493.484

182.205

60-69

9.581.000

1.590.446

435.782

70-79

7.645.000

1.857.735

802.541

80+

6.500.000

1.774.500

1.258.121

Insgesamt

83.182.000

7.700.729

2.734.297

Prozentual

100 %

9,3 %

3,28 %


Wenn man nun einrechnet, dass sich in der Aufteilung nur noch 60% der Menschen mit Symptomen befinden, kommt man für Deutschland auf folgende Verteilung


Mild

Krankenhaus

Intensivstation

84,5 %

10,03 %

5,46 %


Bei einem leichten Verlauf sind die Patienten nach einer Woche wieder gesund und gehören nun zu den Immunen, die sich nicht noch einmal infizieren können. Bei einem leichten Verlauf gehe ich davon aus, dass alle Patienten den Krankheitsverlauf nach einer Woche überstehen. Für die leichten/milden Verläufe gibt es also folgende Formeln:

[Quarantäne]*0.845 (Übergang in den Verlauf)

Delay([leichter Verlauf], {1 Weeks}) (Genesung)


Bei einem „mittleren“ Verlauf ist eine Behandlung im Krankenhaus nötig, diese allerdings findet in einem normalen Krankenhausbett statt. Von diesen haben wir in Deutschland aktuell 497.180. Hiervon sind allerdings gerade schon 78% ohne die Corona-Krise ausgelastet, sodass man auf eine Anzahl von freien Betten auf 109.380 kommt. Wenn ein Patient nun also eine Behandlung mit mildem Verlauf bekommt, überlebt er seine Krankheit und verlässt das Krankenhaus nach 2 Wochen. Wenn alle Betten belegt sind, sterben allerdings alle Leute die keine Behandlung bekommen können. Hierfür ergeben sich dann folgende Formeln

[Quarantäne]*0.1003 (Übergang in den Verlauf)

Delay([mittlerer Verlauf mit Behandlung], {2 Weeks}) (Übergang mit Behandlung)

IfThenElse([mittlerer Verlauf mit Behandlung] > [Krankenhausbetten], [mittlerer Verlauf mit Behandlung]-[Krankenhausbetten], 0) (Abfluss der Leute die zu viel im Krankenhaus sind)


Bei der schweren Erkrankung, werden Betten auf der Intensivstation benötigt, von denen es aktuell 28.000 gibt, hiervon sind allerdings nur 5.600 frei. Auch hier sterben Personen, die keine Behandlung genießen können, bei behandelten Personen beträgt die Behandlungsdauer 4 Wochen und die Wahrscheinlichkeit, dass diese die Krankheit überleben 60%. 40% sterben trotz der Behandlung und geben das Bett auf der ITS Station nach 4 Wochen wieder frei. Hierfür ergeben sich also die folgenden Formeln:

[Quarantäne]*0.0546 (Übergang in den Verlauf)

IfThenElse([schwere Erkrankung mit Behandlung] > [ITS Betten], [schwere Erkrankung mit Behandlung]-[ITS Betten], 0) (Tot ohne Behandlung)

Delay([schwere Erkrankung mit Behandlung], {4 Weeks})*0.4 (Tot trotz Behandlung)

Delay([schwere Erkrankung mit Behandlung], {4 Weeks})*0.6 (Genesung mit Behandlung)


Für die Statistik habe ich außerdem noch die Auslastung der Krankenhäuser berechnet, welche mit den folgenden Formeln ausgerechnet wird

[schwere Erkrankung mit Behandlung]/[ITS Betten]*100

[mittlerer Verlauf mit Behandlung]/[Krankenhausbetten]*100


Zum Vergleich mit den Zahlen sind außerdem noch die gemeldeten Fallzahlen wichtig. Da allerdings nur Fälle gemeldet werden die in Quarantäne gehen, habe ich für die gemeldeten Fallzahlen einen Stock erstellt, der sich aus folgender Flow Formel zusammensetzt:

[Übergang in Quarantäne]


Für die Berechnung habe ich das RK4 (Runge-Kutta-Verfahren 4. Ordnung) gewählt, da es sich bei der Simulation um eine kontinuierliche Simulation handelt, in der sich quasi in jedem Moment Personen mit dem Virus infizieren/infizieren können und sich die Änderungsraten quasi immer ändern. Eine Berechnung mit dem Euler-Cache Verfahren würde hier von der Realität noch stärker abweichen.


Beurteilung der Ergebnisse


Für meine Beurteilung werde ich den Vergleich mit realen Zahlen und den aktuellen Fallzahlen durchführen. Die Fallzahlen lassen sich in der oben genannten Tabelle auf GitHub einsehen. Da meine Simulation eine Isolation der Infektionskette nicht einschließt, starten wir nicht mit einem Infizierten, sondern mit einer Zahl wo das Gesundheitsministerium schon überfordert ist. Für die Fallzahlen in Deutschland habe ich mir die Fallzahl 159, vom 2.3.2020 ausgesucht. Wir starten also mit einer Erstinfektion von 159 infizierten, von denen 16 allerdings schon wieder gesund sind, macht 143 Infizierungen. Da dies allerdings nur 60% der infizierten sind, müssen wir mit 238 Infizierten starten. Den infektiösen Zeitraum hatten diese also in den 3 Tagen davor, infiziert haben sie sich 5,5 Tage zuvor, zum infizieren brauchen sie auch noch einen Tag. Bei Tag 9,5 der Simulation sind wir also am 2.3.2020. Da sich die History Funktion ihren Übergang allerdings aufteilt, ist ein so statisches Rückrechnen nur bedingt möglich, weshalb der Ausbruch auch erst 1,5 Tage später startet. Bei Tag 10,5 sind wir bei 176 Fällen, diesen Tag nehmen wir jetzt also als Referenzpunkt für den Vergleich. Doch wenn man sich dann die Kurven anschaut, merkt man wie die Simulation zuerst einen zu starken Anstieg beinhaltet und dann eine zu starke Abflachung. Dies lässt sich in folgender Grafik erkennen: 

Anscheinend ist der Faktor der Ansteckung zu hoch, die Ansteckungsdauer ist nicht so lang, die Ansteckung bei nicht bemerken ist falsch, oder der Faktor lässt sich nicht auf Deutschland berechnen. Auch sind die Ausprägungen der Ansteckungswellen in meiner Simulation stärker, was wohl daran liegt, dass die Inkubationszeit zwar im Durchschnitt bei 5,5 Tagen liegt, und 3 Tage danach der Mensch infektiös ist, jedoch auch zu anderen Tagen Infektionen stattfinden. Man muss jedoch beachten, dass sich der Virus in Deutschland ja nicht ohne Grenzen ausbreitet, da ja schon verstärkt auf Hände waschen geachtet wurde, seitdem das Thema bekannt geworden ist. Jedoch lässt sich sowohl in der Simulation, als auch in der realen Welt gerade eine exponentielle Kurve erkennen, in der sich das Virus ausbreitet.

Zusammenfassend muss man einfach erkennen, dass sich der Virus und die Ausbreitung in Deutschland eben doch nicht so einfach simulieren lässt wie es auf den ersten Blick aussieht. Faktoren sind zu unbekannt und auch das Verhalten der Bevölkerung auf Einschränkungen kann man noch nicht genau abschätzen. Trotzdem sind meine Kurven recht nah an der Realität, in ein paar Tagen wissen wir dann auch ob sich die Kurven noch einmal treffen. Aktuell lässt sich jedoch nicht simulieren inwiefern Einschränkungen im öffentlichen Leben wirken, wie die Menschen reagieren und auch die Frage eines Impfstoffes oder der Bau zusätzlicher Betten kann zumindest von mir aktuell nicht mit eingerechnet werden. Trotzdem bin ich der Meinung mit meiner Simulation recht nah an die Realität gekommen zu sein.

Flussdiagramm  

Das Flussdiagramm ist in folgendem Klon erkennen: https://insightmaker.com/insight/188828/Corona-DE-Flussdiagramm

Zeitdiagramme

Ich habe folgende Diagramme zur Lesbarkeit der Ergebnisse erstellt:


„Infizierte/Geheilt/Tot“ -> Graph, der die Kurven der aktuell infizierten, der toten und der Immunen zeigt

„Infizierte“ -> Die kummulierten gemeldeten Fälle und die aktuell Infizierten als Graph

„Krankenhaus Auslastung in %“ -> Krankenhausauslastung der ITS Betten und der normalen Betten in % als Graph

„Tode“ -> Die insgesamt gestorbenen Menschen

„Auswertung“ -> Eine Tabelle der kummulierten gemeldeten Fälle zur Angleichung mit den realen Fällen


Folgende Situationen habe ich einmal simuliert:


Die ersten 100 Tage ohne Eingreifen der Regierung        


Eine Ausgangssperre nach 10.000 gemeldeten Infizierten    


Meine Simulation lässt sich unter folgendem Link erreichen: https://insightmaker.com/insight/188584/Corona-DE

Außerdem habe ich noch folgende Quellen genutzt (zusätzlich zu den im Text genannten):

https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Recovered.csv

https://www.spiegel.de/wissenschaft/medizin/coronavirus-covid-19-in-grafiken-erklaert-a-35ecab26-66f8-4793-97ea-6d592959d94a

https://www.dgepi.de/assets/Stellungnahmen/Stellungnahme2020Corona_DGEpi-20200319.pdf

COVID-19 Outbreak in Burnie Tasmania Simulation Model    Introduction:     This model simulates the COVID-19 outbreak situation in Burnie and how the government responses impact local economy. The COVID-19 pandemic spread is influenced by several factors including infection rate, recovery rate, deat
COVID-19 Outbreak in Burnie Tasmania Simulation Model

Introduction:

This model simulates the COVID-19 outbreak situation in Burnie and how the government responses impact local economy. The COVID-19 pandemic spread is influenced by several factors including infection rate, recovery rate, death rate and government's intervention policies.Government's policies reduce the infection spread and also impact economic activities in Burnie, especially its tourism and local businesses.   

Assumptions: 

- This model was built based on different rates, including infection rate, recovery rate, death rate, testing rate and economic growth rate. There can be difference between 
this model and reality.

- This model considers tourism and local business are the main industries influencing local economy in Burnie.

- Government's intervention policies will positive influence on local COVID-19 spread but also negative impact on local economic activity.

- When there are more than 10 COVID-19 cases confirmed, the government policies will be triggered, which will brings effects both restricting the virus spread and reducing local economic growth.

- Greater COVID-19 cases will negatively influence local economic activities.

Interesting Insights:

Government's vaccination policy will make a important difference on restricting the infection spread. When vaccination rate increase, the number of deaths, infected people and susceptible people all decrease. This may show the importance of the role of government's vaccination policy.

When confirmed cases is more than 10, government's intervention policies are effective on reducing the infections, meanwhile local economic activities will be reduced.

A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
This model estimates the deaths due to COVID19 in Bangalore City.  Assumptions:  City has a population = 8 Million  Initial infected population = 10  Probability of infection = 8%  Contact rate in population = 6  Average duration of recovery = 10 days  Death rate = 1%  Quarantine rate = 80%  Delay i
This model estimates the deaths due to COVID19 in Bangalore City. 
Assumptions:
City has a population = 8 Million
Initial infected population = 10
Probability of infection = 8%
Contact rate in population = 6
Average duration of recovery = 10 days
Death rate = 1%
Quarantine rate = 80%
Delay in quarantine = 5 days