A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

Hybrid conceptual mapping of relationships involving system causal loop diagram linked with ABM. Output of the problem conceptualization phase of the modelling process prior to developing a computational hybrid model in AnyLogic. Includes Nate Osgood's O PARTIES extension of Ross Hammond's PARTE
Hybrid conceptual mapping of relationships involving system causal loop diagram linked with ABM. Output of the problem conceptualization phase of the modelling process prior to developing a computational hybrid model in AnyLogic. Includes Nate Osgood's O PARTIES extension of Ross Hammond's PARTE
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

An overview of this quantitative systems science method based on Kurt Kreuger's workshops for public health
An overview of this quantitative systems science method based on Kurt Kreuger's workshops for public health
4 months ago
 From  IM-3533  Grimm's ODD and Nate Osgood's ABM Modeling Process and  Courses  based on Volker Grimm and Steven F. Railsback's 2012  paper  and Muller et al 2013  paper  Describing Human Decisions in Agent-based Models – ODD + D, An Extension of the ODD Protocol', Environmental Modelling and Softw

From IM-3533 Grimm's ODD and Nate Osgood's ABM Modeling Process and Courses based on Volker Grimm and Steven F. Railsback's 2012 paper and Muller et al 2013 paper Describing Human Decisions in Agent-based Models – ODD + D, An Extension of the ODD Protocol', Environmental Modelling and Software, 48: 37-48.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of the spread of fear in a population through local contagion. Modified from a simple disease model. There are three states people can take based on: susceptible (Potentially Fearful), infected (Afraid), and recovered (Confident).  A very imperfect and laughably

A spatially aware, agent based model of the spread of fear in a population through local contagion. Modified from a simple disease model. There are three states people can take based on: susceptible (Potentially Fearful), infected (Afraid), and recovered (Confident).

A very imperfect and laughably sketchy simple start to pursue an unreasonably pompous proposal... https://metonymize.substack.com/p/what-anthropology-might-offer-ai

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    If you find these contributions meaningful your  sponsorship  would be greatly appreciated.
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

If you find these contributions meaningful your sponsorship would be greatly appreciated.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

Demo of population growth with distinct agents.
Demo of population growth with distinct agents.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.