A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of  IM-14982  combined with  IM-17598  and  IM-9773
Clusters of interacting methods for improving health services network design and delivery. Includes Forrester quotes on statistical vs SD methods and the Modeller's dilemma. Simplified version of IM-14982 combined with IM-17598 and IM-9773
A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough no
A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough not to be detected by the ‘surveillance’ within the system, but significant enough to encroach upon the “tolerance” zone of the system and compromise the integrity of the system. TYST is an unintentional process that is experienced within the system and made possible by the lack of transparency between an overarching level and a local level where the encroachment is taking place.

Reference:

Haraldsson, H. V., Sverdrup, H. U., Belyazid, S., Holmqvist, J. and Gramstad, R. C. J. (2008), The Tyranny of Small Steps: a reoccurring behaviour in management. Syst. Res., 25: 25–43. doi: 10.1002/sres.859 

An implementation of the Butterfly model from  Agent-Based and Individual Based Modeling  by Steven Railsback and Volker Grimm.     Model ODD:  http://www.railsback-grimm-abm-book.com/Chapter04/ButterflyModelODD.txt
An implementation of the Butterfly model from Agent-Based and Individual Based Modeling by Steven Railsback and Volker Grimm. 

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

This is my first attempt at creating a simple Agent Based Simulation Model. Nothing fancy, just something that works.    If you find these contributions meaningful your  sponsorship  would be greatly appreciated.
This is my first attempt at creating a simple Agent Based Simulation Model. Nothing fancy, just something that works.

If you find these contributions meaningful your sponsorship would be greatly appreciated.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

Demo of population growth with distinct agents.    If you find these contributions meaningful your  sponsorship  would be greatly appreciated.
Demo of population growth with distinct agents.

If you find these contributions meaningful your sponsorship would be greatly appreciated.
Completion of  IM-15119  (which added patches to  IM-14058 ). Unconscious affective dynamics Josh Epstein's Agent Zero Book  webpage   Part II p.89 with 2 agent types, spatial patches and location aware, mobile occupying (blue) agents
Completion of IM-15119 (which added patches to IM-14058). Unconscious affective dynamics Josh Epstein's Agent Zero Book webpage  Part II p.89 with 2 agent types, spatial patches and location aware, mobile occupying (blue) agents

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).