Climate Change Models

These models and simulations have been tagged “Climate Change”.

Related tagsGreenhouse EffectClimate

 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
4 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
12 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
9 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
7 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
5 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
The 3-machines energy transition model is a global system dynamics model based on energy balances,  and used to explore the energy frontiers for stabilizing the Earth's climate. The model comprises a hypothetical fossil engine, a solar engine including energy storage, and a carbon scrubber. These ma
The 3-machines energy transition model is a global system dynamics model based on energy balances,  and used to explore the energy frontiers for stabilizing the Earth's climate. The model comprises a hypothetical fossil engine, a solar engine including energy storage, and a carbon scrubber. These machines interact with Earth's carbon cycle and satisfy humanity’s energy demand. A detailed description can be accessed here: https://osf.io/fcwt8/
9 3 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
11 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
5 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
5 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
6 months ago
The 3-machines energy transition model is a global system dynamics model based on energy balances,  and used to explore the energy frontiers for stabilizing the Earth's climate. The model comprises a hypothetical fossil engine, a solar engine including energy storage, and a carbon scrubber. These ma
The 3-machines energy transition model is a global system dynamics model based on energy balances,  and used to explore the energy frontiers for stabilizing the Earth's climate. The model comprises a hypothetical fossil engine, a solar engine including energy storage, and a carbon scrubber. These machines interact with Earth's carbon cycle and satisfy humanity’s energy demand. A detailed description can be accessed here: https://osf.io/fcwt8/
10 5 months ago
Changes to V17: capacity retirement updated, fraction of Al in energy intensities endognously calculated; fC repair is now also limited by Al supply gap
Changes to V17: capacity retirement updated, fraction of Al in energy intensities endognously calculated; fC repair is now also limited by Al supply gap
6 2 weeks ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
11 months ago
 WIP Cloned from WIP  Africa Just Transition insight  including (Fig 3.1 from Jorgen Randers  book  2052 a Global Forecast for the Next Forty Years) with Fidel Kaboub MMT Prespective to continue top down work on my slides of clds and macroeconomics

WIP Cloned from WIP Africa Just Transition insight including (Fig 3.1 from Jorgen Randers book 2052 a Global Forecast for the Next Forty Years) with Fidel Kaboub MMT Prespective to continue top down work on my slides of clds and macroeconomics

 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
3 months ago
 WIP Cloned  insight  (Fig 3.1 from Jorgen Randers  book  2052 a Global Forecast for the Next Forty Years) with Fidel Kaboub MMT Prespective  CLD kumu  added ALso AI based work at  Gene's brain link  and Colonial origins (Why Nations Fail Critique)  paper (also via brain link)  Continued  top down i

WIP Cloned insight (Fig 3.1 from Jorgen Randers book 2052 a Global Forecast for the Next Forty Years) with Fidel Kaboub MMT Prespective CLD kumu added ALso AI based work at Gene's brain link and Colonial origins (Why Nations Fail Critique) paper (also via brain link) Continued top down integration at insight