This is the first draft of the design of a laboratory to analyse Heavy Fuel Oil used in Power Plant to generate energy. The properties to be analyzed are Viscosity, Density, Sediments, Asphaltene, Ash, Metals( Al+Si, Ca, Zn, Na, P, V), Flash Point, Pour point, Water and Carbon residue.    Before an
This is the first draft of the design of a laboratory to analyse Heavy Fuel Oil used in Power Plant to generate energy. The properties to be analyzed are Viscosity, Density, Sediments, Asphaltene, Ash, Metals( Al+Si, Ca, Zn, Na, P, V), Flash Point, Pour point, Water and Carbon residue.

Before an actual schematic of the lab is to be drawn, we need to visualize how a chemist goes about analyzing these different properties. 
This means taking into account; analysis methods overlaps, incompatible equipment left in proximity, substances that would need to be disposed and try to make the pathway as circular as possible to save time and energy. Avoid zig-zags.
This simulation examines carrying capacity, based on a given cropland input in acres.
This simulation examines carrying capacity, based on a given cropland input in acres.
The statement that there can be no economic activity
without  energy and that fossil fuels are
finite contrasts with the fact that money is not finite and can be created by governments
via their central banks at zero marginal cost whenever needed.

 An important fact about COAL, GAS and OIL (especia
The statement that there can be no economic activity without  energy and that fossil fuels are finite contrasts with the fact that money is not finite and can be created by governments via their central banks at zero marginal cost whenever needed.

An important fact about COAL, GAS and OIL (especially when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. The falling ratio 'EROI' (Energy Return on Energy Invested ) provides yet another warning that we can no longer rely on fossil fuels to power our economies. In 1940 it took the energy of only one barrel of oil to extract 100. Today the energy of 1 barrel of oil will yield only 15. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. An EROI of 1:1 means that it takes the energy of one barrel of oil to extract one barrel of oil - oil production would simply stop! 


Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
Units don't really work, not sure what to do regarding flow units (can't divide units and the conversion part doesn't make any sense)
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


This simulation examines the linkages between cultural, material, spatial demographic, and hierarchical dynamics.
This simulation examines the linkages between cultural, material, spatial demographic, and hierarchical dynamics.
Trying to show the drop in Barrels of Oil per day as the number of Electric Vehicles on the road increases.
Trying to show the drop in Barrels of Oil per day as the number of Electric Vehicles on the road increases.
A detailed description of all model input parameters is available  here . These are discussed further  here  and  here .  Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" value
A detailed description of all model input parameters is available here. These are discussed further here and here.

Update 14 December 2015 (v2.5): correction to net output basis LCOE calculation, to include actual self power demand for wind, PV and batteries in place of "2015 reference" values.

Update 20 November 2015 (v2.4): levelised O&M costs now added for wind & PV, so that complete (less transmission-related investments) LCOE for wind and PV is calculated, for both gross and net output.

Update 18 November 2015 (v2.3: development of capital cost estimates for wind, PV and battery buffering, adding levelised capital cost per unit net output, for comparison with levelised capital cost per unit gross output. Levelised capital cost estimate has been substantially refined, bringing this into line with standard practice for capital recovery calculation. Discount rate is user adjustable.

Default maximum autonomy periods reduced to 48 hours for wind and 72 hours for PV.

Update 22 October 2015 (v2.2): added ramped introduction of wind and PV buffering capacity. Wind and PV buffering ramps from zero to the maximum autonomy period as wind and PV generated electricity increases as a proportion of overall electricity supply. The threshold proportion for maximum autonomy period is user adjustable. Ramping uses interpolation based on an elliptical curve between zero and the threshold proportion, to avoid discontinuities that produce poor response shape in key variables.

Update 23 September 2015 (v2.1): added capital investment calculation and associated LCOE contribution for wind generation plant, PV generation plant and storage batteries.

**This version (v2.0) includes refined energy conversion efficiency estimates, increasing the global mean efficiency, but also reducing the aggressiveness of the self-demand learning curves for all sources. The basis for the conversion efficiencies, including all assumptions relating to specific types of work & heat used by the economy, is provided in this Excel spreadsheet.

Conversion of self power demand to energy services demand for each source is carried out via a reference global mean conversion efficiency, set as a user input using the global mean conversion efficiency calculated in the model at the time of transition commencement (taken to be the time for which all EROI parameter values are defined. A learning curve is applied to this value to account for future improvement in self power demand to services conversion efficiency.**

The original "standard run" version of the model is available here.
This model prototypes the working of an Smart Grid with Electric Vehicles   The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehi
This model prototypes the working of an Smart Grid with Electric Vehicles

The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehicle to Grid), and in a communal battery.

Except when specified otherwise, the units of all variables are expressed in W/h.

Press "Story" in the lower bar for a guided tour over the model. Better seen at 50% zoom.

by Carlos Varela (cvarela@gmx.at)
Filling a tank with a pump. Tank is straight-walled (constant capacitance). Flow is laminar (linear flow relation.    Energy quantities have been added.
Filling a tank with a pump. Tank is straight-walled (constant capacitance). Flow is laminar (linear flow relation.

Energy quantities have been added.
Attempt to clarify the differences in the energy balance and carbohydrate insulin obesity models described in Speakman and Hall's 2021  science article  See also Nature Metabolism Obesity Causal Model Differences 2024  article  and  insight
Attempt to clarify the differences in the energy balance and carbohydrate insulin obesity models described in Speakman and Hall's 2021 science article See also Nature Metabolism Obesity Causal Model Differences 2024 article and insight