Clone of Clone of Clone of Oyster Growth based on Phytoplankton Biomass
Joana Ferreira Cardoso
Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:
Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))
Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).
Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.
Environment Phytoplankton Primary Production Bivalves Growth
- 6 years 8 months ago
Clone of Phyto 2 - Michaelis-Menten curve for phytoplankton
António Delgado
The equation is:
P = Ppot S / (Ks + S)
Where:
P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)
The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
- 6 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Brinton Urina Montenegro
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Laura Catalina Cantor Acosta
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of Phyto 1 - PI curve for phytoplankton
Fábio Cardona
The equation is:
Ppot = Pmax I/Iopt exp(1-I/Iopt)
Where:
Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)
The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
- 6 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Carlos Bonilla
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Laura Catalina Cantor Acosta
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Julian Hernández Velásquez
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Juan Antonio Jaramillo Zapata
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of Clone of Oyster Growth based on Phytoplankton Biomass
Eduardo
Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:
Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))
Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).
Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.
Environment Phytoplankton Primary Production Bivalves Growth
- 6 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Soraya Castillo Giraldo
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of Phyto 2 - Michaelis-Menten curve for phytoplankton
Joana Ferreira Cardoso
The equation is:
P = Ppot S / (Ks + S)
Where:
P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)
The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
- 6 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Juan Antonio Jaramillo Zapata
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
mauricio david rosero
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Juan Antonio Jaramillo Zapata
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of Phytoplankton model URI
Pedro Pato
Potential primary production uses Steele's equation and a Michaelis-Menten (or Monod) function for nutrient limitation. Respiratory losses are only a function of biomass.
- 5 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Juan Pablo Rendón Álvarez
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
santiago mejia
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Diana Cristina Cardona Duque
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Carlos Bonilla
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Carlos Bonilla
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of Clone of Phyto 1 - PI curve for phytoplankton
Fábio Cardona
The equation is:
Ppot = Pmax I/Iopt exp(1-I/Iopt)
Where:
Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)
The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
- 6 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
yordan arango
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Diana Cristina Cardona Duque
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Environment Primary Production Phytoplankton Biogeochemistry Ocean
- 4 years 8 months ago