This insight maker depicts the correlations between energy supply and water use in desalination potential in South Africa.  Pink: economics and quality of life.  Yellow: energy supply  Orange: variable links  Blue: water and its relationships   Green: household unit of population measurement
This insight maker depicts the correlations between energy supply and water use in desalination potential in South Africa. 
Pink: economics and quality of life.
Yellow: energy supply
Orange: variable links
Blue: water and its relationships 
Green: household unit of population measurement
Dinámica del  contenido de agua útil  en el suelo
Dinámica del contenido de agua útil en el suelo
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
This is step 5 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​  In the prevoious step we added the reflection of sun energy by Clouds     In this step we added aabsorption of near infrared by clouds and the biotic pump   Presen
This is step 5 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​

In the prevoious step we added the reflection of sun energy by Clouds 

In this step we added aabsorption of near infrared by clouds and the biotic pump

Present the temperature of the Earth is 288 Kelvin. Without Earth would be 255 Kelvin. So the energy balance of the Earth add 33 Kelvin.
We optimize in step 4 the variable GHG-effect and the optimal number is 0,29625 in this model.


With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Phoenix only.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

7 months ago
 Develop a daily time step simulation model that consists of a reservoir with a single inflow and single outflow (release)  Use units of million m3 and include any necessary parameters (e.g., capacity k) as separate adjustable variables  Implement the standard linear operating policy (SLOP).   Assum
Develop a daily time step simulation model that consists of a reservoir with a single inflow and single outflow (release)
Use units of million m3 and include any necessary parameters (e.g., capacity k) as separate adjustable variables
Implement the standard linear operating policy (SLOP). 
Assume the reservoir is 500 mcm (k=500). 
Develop yield-reliability results for a target (T) delivery values of 1, 3, 5, and 7 mcm/day.3 
(The mean inflow for the time series is 34.8 m3/s, or 3.0 million m3/day.)

The standard linear operating policy provides a basic rule for reservoir release. 

Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Moving away from monoculture mass production of food to a diversified food production system that supports the envirnment while providing food.
Moving away from monoculture mass production of food to a diversified food production system that supports the envirnment while providing food.
This is step 4 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​  In this step we added the absorption of Sun Energy by the atmosphere via water vapor. 50% of this energy is radiated to Earth and 50% back into space.  We have mad
This is step 4 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​

In this step we added the absorption of Sun Energy by the atmosphere via water vapor. 50% of this energy is radiated to Earth and 50% back into space.

We have made a stock containing the IR that is going back to Earth.


With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

7 months ago
With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. Peop
With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Rough draft of model to relate Edwards Aquifer water storage to spring flow, pumping rates and other variables.
Rough draft of model to relate Edwards Aquifer water storage to spring flow, pumping rates and other variables.
Well and treatment system model for VisionTrust Sattur learning center, ​Tamil Nadu, India.  http://en.wikipedia.org/wiki/Sattur  https://www.visiontrust.org/where/country/id/india
Well and treatment system model for VisionTrust Sattur learning center, ​Tamil Nadu, India.

http://en.wikipedia.org/wiki/Sattur

https://www.visiontrust.org/where/country/id/india