Ecology Models
These models and simulations have been tagged “Ecology”.
Related tagsPopulationEnvironmentBiologyEducationChaosEcosystem
These models and simulations have been tagged “Ecology”.
Related tagsPopulationEnvironmentBiologyEducationChaosEcosystem
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
This is a system dynamic model to describe relationship between local logging industry and biking tourism in Tasmanian Derby Mountain.
In the dynamic model, the left-hand side shows how Derby get income from local biking tourism. The biking visitors number are influenced by scenery evaluation which depend on local size of forest and influenced government policy support when Biking Tourism income is over 1000 unit. Biking visitors with good recommendation will also back to Mountain Derby and bring income for local in twice or more times. In the right-hand side, we found the income of logging industry was influenced by local logging growth rate and government policy if local Biking Tourism income is over 1000 unit. The increase of logging industry will also increase local employment which will influence employee cost. This factor will also affect total logging income in Derby Mountain.
The simulation results show, with governments support the Biking tourism will increase sharply in the first few years and finally instead local logging industry, at same time bring good environment and save local forest under local increase logging industry. The recommendation graph shows that, the number of good recommendation & bad recommendation for Derby Mountain biking tourism will also increase in high speed in front of few years with data fluctuation but finally maintain in a stable line. Last simulation graph shows that how policy factor influences logging and biking industry. The Government has strong support in local tourism, however, as number of tourists increase, the positive impact from government support will continue decrease. On the contrary, the government support influence will also decease to local logging industry when logging been instead by tourism.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.
With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.
PredatorsThe predator equation becomes
dy/dt = -
In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.
Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.