A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
Tento rich picture zachycuje problematiku výstavy dětského hřiště na území parku obce Božkov.
Tento rich picture zachycuje problematiku výstavy dětského hřiště na území parku obce Božkov.
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

This is a test about the user friendliness of the tool
This is a test about the user friendliness of the tool
  Format: Given  pre-conditions  when  independent variables(s)  then  dependent variable         Given  Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12))  when  one of these independent variables change  then  how   sensitive   is
Format: Given pre-conditions when independent variables(s) then dependent variable

Given Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12)) when one of these independent variables change then how sensitive is Investment (22) over a 30 year time period (-1,000)

H1: if you Earn more then Investment will last much longer => rejected

H2: if you Spend less then Investment will last much longer => accepted

H3: if your Initial Investment is higher then Investment will last much longer => accepted

H4: if you reduce your Spend when Investments are declining then Investment will last much longer => accepted

Given Earnings Decline (0.25), Spending Variance (55), Initial Investment (500) and Rate of Return (RandNormal(0.06, 0.12)) when one of these independent variables are optimised then Investment will last exactly 30 years by minimising the absolute investment gap

H1: if you set an appropriate Spending Base then remaining Investment is 0 => rejected

H2: if you set an appropriate Spending Reduction then remaining Investment is 0 => rejected

Source for investment returns: https://seekingalpha.com/article/3896226-90-year-history-of-capital-market-returns-and-risks
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?
the simulation shows how our money grows overtime as we keep investing our money every month in money market mutual funds. But overtime monetary value keeps growing up with constant rate of 3%, so what this simulation shows us is the real value of the money we invest in mutual funds that have a cert
the simulation shows how our money grows overtime as we keep investing our money every month in money market mutual funds. But overtime monetary value keeps growing up with constant rate of 3%, so what this simulation shows us is the real value of the money we invest in mutual funds that have a certain rate of interest.