Model of Covid-19 outbreak in Burnie, Tasmania     This model was designed from SIR model(susceptible, infected, revovered) to find out the effect of covid-19 outbreak into economic outcomes via government policy.     Assumptions     The government policy is triggered when number of infected is mor
Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from SIR model(susceptible, infected, revovered) to find out the effect of covid-19 outbreak into economic outcomes via government policy.

Assumptions

The government policy is triggered when number of infected is more than ten.

The government policies will take negative effect into Covid-19 outbreaks and financial system

Parameters

We set some fixed and adjusted variables.
Covid-19 outbreak's parameter
Fixed parameters: Infection rate, Background disease, recovery rate.
Adjusted parameter: Immunity loss rate can be change from vaccination rate.

Government policy's parameters
Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters
Fixed parameter: Tourism
Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

Increase vaccination rate and testing rate will decrease the number amount of infected case and a little bit more negative effect to economic system. However economic system still need a long time to recover in both cases.
Tugas Pemodelan Transportasi Laut    Memodelkan persebaran pandemik covid-19 menggunakan insightmaker     Dosen pembimbing : Dr-Ing Ir. Setyo Nugroho
Tugas Pemodelan Transportasi Laut

Memodelkan persebaran pandemik covid-19 menggunakan insightmaker

Dosen pembimbing : Dr-Ing Ir. Setyo Nugroho
 This is the first in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic  model divides the population into three categories -- Susceptible (S), Infectious (I) and Recovered (R).       Press the simulate button to run the model and see what happens
This is the first in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic  model divides the population into three categories -- Susceptible (S), Infectious (I) and Recovered (R).  

Press the simulate button to run the model and see what happens at different values of the Reproduction Number (R0).

The second model that includes a simple test and isolate policy can be found here.