Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.
Modelling the demand for health and care resources resulting from the Covid-19 outbreak using an SEIR model.

 Modelling of the SARS-Cov-2 viral outbreak using an SEIR model plus specific extensions to model demand for health and care resources.     The model includes biths and deaths, and migration to accommodate import and export of infected individuals from other areas.     Healthcare resources identifie
Modelling of the SARS-Cov-2 viral outbreak using an SEIR model plus specific extensions to model demand for health and care resources.

The model includes biths and deaths, and migration to accommodate import and export of infected individuals from other areas.

Healthcare resources identifies need for hospital beds and critical care.

The model is uses arrays to reflect the different impacts of modelled parameters by age and sex.


 Brief of the model: 

 The model predicts the outbreak of COVID-19 in the Burnie,
Tasmania area. It is imperative to clarify that this model was developed from
the SEIR model (Susceptible, Infected, Infected, Recovered). The spread of this
pandemic is driven by a combination of infection rates, m

Brief of the model:

The model predicts the outbreak of COVID-19 in the Burnie, Tasmania area. It is imperative to clarify that this model was developed from the SEIR model (Susceptible, Infected, Infected, Recovered). The spread of this pandemic is driven by a combination of infection rates, mortality rates, and recovery rates from the virus itself, as well as government policies.

For COVID-19 itself, vaccination directly reduces the infection rate, thereby reducing the mortality rate of COVID-19 patients and the reduction of confirmed cases. In other words, if the local population is adequately vaccinated, everyday life, shopping, tourism, and even national borders will be open rather than in a closed border situation.

 

Assumption of the model:

The model simulated based on different rates, including Infecting rate, Death Rate, Test Rate, Immunity Loss Rate and Recovery Rate. And, this model lists six elements of government policy, which including border closure, travel ban, social distancing, business restriction, self-quarantine, and vaccination schedule.

Besides, the model considers three economic entities in the Burnie area, one in the brick-and-mortar industry and online business industry. Government policies have somewhat reduced COVID-19 infections. Still, they have also at the same time, online businesses played an essential role in stimulating local economic activity during the pandemic. At the same time, however, online businesses played an indispensable role in promoting regional economic activity during the pandemic.

 

The prediction model is for reference only, and there may be differences between the actual cases and the model.

 

 

Insights of the model:

Due to the high infection and low recovery rates and timely government policy interventions, the number of susceptible individuals changes dramatically in the first four weeks. However, the number of sensitive individuals continues to decline after this period, but the decline is not significant. Secondly, with the implementation of government policies, the number of suspected patients who tested negative for medical follow-up continued to rise, implying that government policy interventions directly affect COVID-19.

 ​Modelo Epidemiológico para os Casos de Covid-19     Insigh autors: Luis Felipe - UFSM                       Carlos Heitor - UFSM                       Paulo Vilella - UFJF
​Modelo Epidemiológico para os Casos de Covid-19

Insigh autors: Luis Felipe - UFSM
                     Carlos Heitor - UFSM
                     Paulo Vilella - UFJF
Данная модель отражает распространение COVID-19 в России на основе статистики за 2020 год. Модель построена в среде Insight Maker по типу SEIRD (Susceptible–Exposed–Infected–Recovered–Dead), с упрощённой динамикой.  Основные параметры:    -Исходное население (масштабировано) : 1000 человек  - Заражё
Данная модель отражает распространение COVID-19 в России на основе статистики за 2020 год. Модель построена в среде Insight Maker по типу SEIRD (Susceptible–Exposed–Infected–Recovered–Dead), с упрощённой динамикой.
Основные параметры:
-Исходное население (масштабировано): 1000 человек
-Заражённые в начале: 2.12% → 21 человек
-Выздоровевшие (Recovery period): через 14 дней
-Смертность: 1.71% от заболевших
-Потеря иммунитета: не учитывается (0%)
-Exogenous (внешнее заражение): 2.12%
-Transmit: 0.3 (зависит от количества заражённых и восприимчивых)
Variant of the model "COVID-19 spread" made by Anxo-Lois Pereira and Miquel Martínez de Morentin, including reinfection, permanent immunity and Vaccines. Made for the subject of TAED.
Variant of the model "COVID-19 spread" made by Anxo-Lois Pereira and Miquel Martínez de Morentin, including reinfection, permanent immunity and Vaccines. Made for the subject of TAED.
 This is the first in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic  model divides the population into three categories -- Susceptible (S), Infectious (I) and Recovered (R).       Press the simulate button to run the model and see what happens
This is the first in a series of models that explore the dynamics of and policy impacts on infectious diseases. This basic  model divides the population into three categories -- Susceptible (S), Infectious (I) and Recovered (R).  

Press the simulate button to run the model and see what happens at different values of the Reproduction Number (R0).

The second model that includes a simple test and isolate policy can be found here.
Tugas Pemodelan Transportasi Laut    Memodelkan persebaran pandemik covid-19 menggunakan insightmaker     Dosen pembimbing : Dr-Ing Ir. Setyo Nugroho
Tugas Pemodelan Transportasi Laut

Memodelkan persebaran pandemik covid-19 menggunakan insightmaker

Dosen pembimbing : Dr-Ing Ir. Setyo Nugroho
   Model description:   This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy.     More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death
Model description:
This model is designed to simulate the outbreak of Covid-19 in Burnie in Tasmania, death cases, the governmental responses and Burnie local economy. 

More importantly, the impact of governmental responses to both Covid-19 infection and to local economy, the impact of death cases to local economy are illustrated. 

The model is based on SIR (Susceptible, Infected and recovered) model. 

Variables:
The simulation takes into account the following variables: 

Variables related to Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate. 

Variables related to Governmental policies: (1): Vaccination mandate. (2): Travel restriction to Burnie. (3): Economic support. (4): Gathering restriction.

Variables related to economic growth: Economic growth rate. 

Adjustable variables are listed in the part below, together with the adjusting range.

Assumptions:
(1): Governmental policies are aimed to control(reduce) Covid-19 infections and affect (both reduce and increase) economic growth accordingly.

(2) Governmental policy will only be applied when reported cases are 10 or more. 

(3) The increasing cases will negatively influence Burnie economic growth.

Enlightening insights:
(1) Vaccination mandate, when changing from 80% to 100%, doesn't seem to affect the number of death cases.

(2) Governmental policies are effectively control the growing death cases and limit it to 195. 

A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover       Assumptions   Govt policy reduces infection and
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
Govt policy reduces infection and economic growth in the same way.

Govt policy is trigger when reported COVID-19 case are 10 or less.

A greater number of COVID-19 cases has a negative effect on the economy.  This is due to economic signalling that all is not well.

Interesting insights

Higher testing rates seem to trigger more rapid government intervention, which reduces infectious cases.  The impact on the economy though of higher detected cases though is negative.