Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators: Overall mortalityr ate (ratio of all deaths to all cases)  Resolved cases mortality rate (ratio of all deaths to recovered cases)     Assumed delays are:  5 weeks for recovery cases  2 weeks fo
Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators:
Overall mortalityr ate (ratio of all deaths to all cases)
Resolved cases mortality rate (ratio of all deaths to recovered cases)

Assumed delays are:
5 weeks for recovery cases
2 weeks for death cases
Delays are built into conveyor stocks, so cannot be adjusted by slider

keep in mind Insigth uses similar but made-up numbers and linear flow of new cases (in opposition to exponential in real world)  
 An SIR model for Covid-19      This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.     Let's think about things on the scale of a week. What happens over a week?       With an Ro of 2 (2 people infected for each infec
An SIR model for Covid-19

This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.

Let's think about things on the scale of a week. What happens over a week?

With an Ro of 2 (2 people infected for each infected individual, over the course of a week); recovery rate of 1 (every infected person loses their infectiousness after a week), and resusceptible rate of .05 (meaning .05, or a twentieth of the recovered lose their immunity each week), the disease peaks -- does the wave, then waves again before the year is out, then ultimately becomes
"endemic" (that is, it's never going away, which is clear after two years -- that is, a time of 104 weeks). This is like our seasonal flu (only the disease in this simulation doesn't illustrate seasonality -- that requires a more complicated model).

With an Ro of .9, recovery rate of 1, and resusceptible rate of .05, the disease is eliminated.

Masking, social distancing (including quarantining following contact), and quarantines all serve to reduce infectivity. And if we can drive infectivity down far enough, the disease can be eliminated. Other things that help is slowing down the resusceptibility, by vaccinating. Vaccines (in general) impart an immune response that reduces -- or even eliminates -- your susceptibility. We are still learning the extent to which these vaccines impart long-term immunity.

Other tools at our disposal include Covid-19 treatments, which increase the recovery rate, and vaccinations, which reduce the resusceptible rate. These can also serve to help us eradicate a disease, so that it doesn't become endemic (and so plague us forever).

Andy Long
Mathematics and Statistics

Some resources:
  1. Wear a good mask: https://www.cdc.gov/coronavirus/2019-ncov/your-health/effective-masks.html
  2. Gotta catch those sneezes: https://www.dailymail.co.uk/sciencetech/article-8221773/Video-shows-26-foot-trajectory-coronavirus-infected-sneeze.html

Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
   Model description:     This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the governm

Model description: 

This model is designed to simulate the Covid-19 outbreak in Burnie, Tasmania by estimating several factors such as exposed population, infection rate, testing rate, recovery rate, death rate and immunity loss. The model also simulates the measures implemented by the government which will impact on the local infection and economy. 

 

Assumption:

Government policies will reduce the mobility of the population as well as the infection. In addition, economic activities in the tourism and hospitality industry will suffer negative influences from the government measures. However, essential businesses like supermarkets will benefit from the health policies on the contrary.

 

Variables:

Infection rate, recovery rate, death rate, testing rate are the variables to the cases of Covid-19. On the other hand, the number of cases is also a variable to the government policies, which directly influences the number of exposed. 

 

The GDP is dependent on the variables of economic activities. Nonetheless, the government’s lockdown measure has also become the variable to the economic activities. 

 

Interesting insights:

Government policies are effective to curb infection by reducing the number of exposed when the case number is greater than 10. The economy becomes stagnant when the case spikes up but it climbs up again when the number of cases is under control. 

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

 Simple epidemiological model for Burnie, Tasmania   SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts           Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected
Simple epidemiological model for Burnie, Tasmania
SIR: Susceptible to infection - Infected - Recovery, Government responses and Economic impacts  

Government policy is activated when there are 10 or fewer reported cases of COVID-19. The more people tested, the fewer people became infected. So the government's policy is to reduce infections by increasing the number of people tested and starting early. At the same time, it has slowed the economic growth (which, according to the model,  will stop for next 52 weeks).