A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover    Assumptions  The government has reduced both the e
A sample model for class discussion modeling COVID-19 outbreaks and responses from government with the effect on the local economy.  Govt policy is dependent on reported COVID-19 cases, which in turn depend on testing rates less those who recover

Assumptions
The government has reduced both the epidemic and economic development by controlling immigration.




   Explanation of the Model    This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing
Explanation of the Model
This is a Model of COVID-19 outbreak in Burnie, Tasmania which shows the government actions in response to the pandemic COVID-19 and its affects on the Economy. The government health policy changes depending on the reported cases, which is a dependent upon the testing rate. 

Assumptions
Lockdown and travel ban were the main factor in government policy. It negatively impacts on the Economic growth as individuals are not going out which is directly affects the business around the world, in this insight 'Burnie'. This reduces the economic growth and the factors positively effecting economic growth such as Tourism.

Government policies has a negative impact on Exposer of individuals. Moreover, it also has a negative impact on chances of infection when exposed as well as other general infection rate.
 

Interesting Insight 
There is a significant impact of test rating on COVID-19 outbreak. Higher rates increases the government involvement, which decreases cases as well as the total death. 
In contrast, lower testing rates increase the death rate and cases. 

Tourism which plays a avital role in Tasmanian Economy greatly affects the Economic Growth. The decline of Tourism in parts of Tasmania such as Burnie, would directly decrease the economy of Tasmania.


  
Simulation of the spread of COVID-19 in Wuhan.
Simulation of the spread of COVID-19 in Wuhan.
     Description:    
Model of Covid-19 outbreak in Burnie, Tasmania  This model was designed from the SIR
model(susceptible, infected, recovered) to determine the effect of the covid-19
outbreak on economic outcomes via government policy.    Assumptions:    The government policy is triggered when t

Description:

Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from the SIR model(susceptible, infected, recovered) to determine the effect of the covid-19 outbreak on economic outcomes via government policy.

Assumptions:

The government policy is triggered when the number of infected is more than ten.

The government policies will take a negative effect on Covid-19 outbreaks and the financial system.

Parameters:

We set some fixed and adjusted variables.

Covid-19 outbreak's parameter

Fixed parameter: Background disease.

Adjusted parameters: Infection rate, recovery rate. Immunity loss rate can be changed from vaccination rate.

Government policy's parameters

Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters

Fixed parameter: Tourism

Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

An increased vaccination rate and testing rate will decrease the number of infected cases and have a little more negative effect on the economic system. However, the financial system still needs a long time to recover in both cases.

   Introduction:        This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates a

Introduction:

This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates and government policies. Although government policy has brought the Covid-19 outbreak under control, it has had a negative impact on the financial system, and the increase in COVID-19 cases has had a negative impact on economic growth.

 

Assumptions:

The model is based on different infection rates, including infection rate, mortality rate, detection rate and recovery rate. There is a difference between a real case and a model. Since the model setup will only be initiated when 10 cases are reported, the impact on infection rates and economic growth will be reduced.

 

Interesting insights:

Even as infection rates fall, mortality rates continue to rise. However, the rise in testing rates and government health policies contribute to the stability of mortality. The model thinks that COVID-19 has a negative impact on offline industry and has a positive impact on online industry.

 This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021     Insight Author: Pia Mae M. Palay
This System Model presents the cases of COVID-19 in Puerto Princesa City as of June 3, 2021

Insight Author: Pia Mae M. Palay
A simple Susceptible - Infected - Recovered disease model.
A simple Susceptible - Infected - Recovered disease model.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

 This Model was first developed from the SIR model (Susceptible, Infected, Recovered). It was designed to explore relationship between the government policies regarding the COVID-19 and its influences on the economy as well as well-being of local residents.       Assumptions:   Government policies w

This Model was first developed from the SIR model (Susceptible, Infected, Recovered). It was designed to explore relationship between the government policies regarding the COVID-19 and its influences on the economy as well as well-being of local residents. 

 

Assumptions:

Government policies will be triggered when reported COVID-19 case are 10 or less;


Government policies reduces the infection and economic growth at the same time;


Ro= 5.7  Ro is the reproduction number, here it means one person with COVID-19 can potentially transmit the coronavirus to 5 to 6 people,

 


Interesting Insights:

In the first two weeks, the infected people showed an exponential growth, in another word, that’s the most important period to control the number of people who got affected. 

 

 The Covid-19 pandemic has introduced a variety of novel and intense difficulties, from dealing with the production network for individual defensive gear (PPE) to changing labor force ability to adapting to monetary misfortune. Amidst these difficulties lies a chance for medical services pioneers to
The Covid-19 pandemic has introduced a variety of novel and intense difficulties, from dealing with the production network for individual defensive gear (PPE) to changing labor force ability to adapting to monetary misfortune. Amidst these difficulties lies a chance for medical services pioneers to more readily position and change their associations for an eventual fate of unusual amazement. To oversee limit, monetary misfortune, and care overhaul, medical services associations have settled on the basic choice to deliver or lessen labor force or to move numerous representatives to far off work, incorporating clinicians working with telehealth advances. (www.catalyst.nejm.org)


Reference:
Begun, J.W. PhD, Jiang, J.H, PhD,. (2020, October 9). NEJM Catalyst/Innovations in Care Delivery. Health Care Management During Covid-19: Insights from Complexity Science. Retrieved from https://catalyst.nejm.org/doi/full/10.1056/CAT.20.0505

 SARS-CoV-19 spread  in different countries - please  adjust variables accordingly        Italy     elderly population (>65): 0.228  estimated undetected cases factor: 4-11  starting population size: 60 000 000  high blood pressure: 0.32 (gbe-bund)  heart disease: 0.04 (statista)  free intensive
SARS-CoV-19 spread in different countries
- please adjust variables accordingly

Italy
  • elderly population (>65): 0.228
  • estimated undetected cases factor: 4-11
  • starting population size: 60 000 000
  • high blood pressure: 0.32 (gbe-bund)
  • heart disease: 0.04 (statista)
  • free intensive care units: 3 100

Germany
  • elderly population (>65): 0.195 (bpb)
  • estimated undetected cases factor: 2-3 (deutschlandfunk)
  • starting population size: 83 000 000
  • high blood pressure: 0.26 (gbe-bund)
  • heart disease: 0.2-0.28 (herzstiftung)
  • free intensive care units: 5 880

France
  • elderly population (>65): 0.183 (statista)
  • estimated undetected cases factor: 3-5
  • starting population size: 67 000 000
  • high blood pressure: 0.3 (fondation-recherche-cardio-vasculaire)
  • heart disease: 0.1-0.2 (oecd)
  • free intensive care units: 3 000

As you wish
  • numbers of encounters/day: 1 = quarantine, 2-3 = practicing social distancing, 4-6 = heavy social life, 7-9 = not caring at all // default 2
  • practicing preventive measures (ie. washing hands regularly, not touching your face etc.): 0.1 (nobody does anything) - 1 (very strictly) // default 0.8
  • government elucidation: 0.1 (very bad) - 1 (highly transparent and educating) // default 0.9
  • Immunity rate (due to lacking data): 0 (you can't get immune) - 1 (once you had it you'll never get it again) // default 0.4

Key
  • Healthy: People are not infected with SARS-CoV-19 but could still get it
  • Infected: People have been infected and developed the disease COVID-19
  • Recovered: People just have recovered from COVID-19 and can't get it again in this stage
  • Dead: People died because of COVID-19
  • Immune: People got immune and can't get the disease again
  • Critical recovery percentage: Chance of survival with no special medical treatment