Description         The model shows Covid-19 situations in Burnie, Tasmania. Under such circumstances, how the state government deals with the pandemic and how economy changes will be illustrated. The relationship between government policy and economic activities under Covid-19 outbreaks will be

Description

 

The model shows Covid-19 situations in Burnie, Tasmania. Under such circumstances, how the state government deals with the pandemic and how economy changes will be illustrated. The relationship between government policy and economic activities under Covid-19 outbreaks will be explained through different variables.


Assumptions

 

Government policy negatively affects Covid-19 outbreaks and economic activities.

Covid-19 outbreaks also has negative effects on economic growth.

 

Parameters

 

There are several fixed and adjusted variables.

 

1.     COVID-19 Outbreaks

Fixed variables: infection rate, recovery rate

Adjusted variables: immunity loss rate

 

2.     Government Policy

Adjusted variables: lockdown, social distancing, testing, vaccination

3.     Economic impact

Fixed variables: tourism

Adjusted variables: economic growth rate

 

Interesting Insights

 

Tourism seems to be the most effective way to bring back economic growth in Tasmania, and it takes time to recover from Covid-19.

 

Government policies tend to have negative influences on economic growth.

This model shows an SIR model of COVID-19 infection in the Philippines. The data used in this model are recent data from COVID-19 statistics reports this 2022. The format of this Philippine COVID-19 model is guided by an Infection Model developed by martin.
This model shows an SIR model of COVID-19 infection in the Philippines. The data used in this model are recent data from COVID-19 statistics reports this 2022. The format of this Philippine COVID-19 model is guided by an Infection Model developed by martin.
  Introduction:   This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government
Introduction:
This simulation model demonstrates the outbreak of Covid-19 in Burnie, Tasmania and how the corresponding government’s responses affect the spreading of Covid-19. Meanwhile, this model also shows how the economy in Burnie is influenced by the impacts of both Covid-19 and government policies.

Variables: 
This simulation contains some relevant variables as follow:

Variables in Covid-19 outbreaks: (1) Infection rate, (2) Recovery rate, (3) Death rate, (4) Immunity loss rate

Variables in Government policies: (1) Vaccination rate, (2) Lockdown, (3) Travel ban, (4)Quarantine

Variables in Economy: (1) E-commerce business, (2) Unemployment rate, (3) Economic growth rate.

Assumption:
Government responses would be triggered when reported Covid-19 cases are at least 10.

The government policies reduce the spreading of Covid-19, but they would also limit economic development at the same time due to the negative impact of the policies on the economy is greater than the positive impact.

The increase in reported Covid-19 cases would negatively affect economic growth.

Interesting Insights:
The first finding is that the death number would keep increasing even though the infection rate has decreased, but with stronger government policies (such as implementing a coefficient over 25%), no more death numbers will occur caused by Covid-19.

The second finding is that as government policies limit business activities, with the increasing number of reported Covid-19 cases, economic growth will suffer a severe blow even if e-commerce grows, it can’t make up for this economic loss.
 System Dynamics of COVID-19 spread
System Dynamics of COVID-19 spread
 The model here shows the COVID-19 outbreaks in Burnie Tasmania, which has impacted in the local economy. the relationship between COVID-19 and economic situation has been shown in the graph. Based on the susceptible analysis, people who usual go out are might have chance to meet susceptible people
The model here shows the COVID-19 outbreaks in Burnie Tasmania, which has impacted in the local economy. the relationship between COVID-19 and economic situation has been shown in the graph. Based on the susceptible analysis, people who usual go out are might have chance to meet susceptible people and have a high rate to be infected. The period of spreading can be controlled by keeping social distance and Government lockdown policy. 

Susceptible can be exposed by go out.  resident has a possibility to infect and be infected by others. people who might be die due to the lack of immunity. and others would recover and get the immune. 

Beside, the economy situation is proportionate to the recovery rate. If there are more recovery rate from the pandemic, the employment rate will be increased and the economy situation will recover as well.   
This system model present the latest cases of Covid19 in Roxas Palawan as of January 28-Feruary 2,2022. Simulation of active cases, Covid19 deaths and recoveries, and confirmed cases.
This system model present the latest cases of Covid19 in Roxas Palawan as of January 28-Feruary 2,2022. Simulation of active cases, Covid19 deaths and recoveries, and confirmed cases.



 This model can be used to investigate how government interventions affect transmission and mortality associated with COVID-19 during an outbreak, and how these interventions impact on the economic activities in Burnie, Tasmania.     Assumptions can be made that effective government intervention can
This model can be used to investigate how government interventions affect transmission and mortality associated with COVID-19 during an outbreak, and how these interventions impact on the economic activities in Burnie, Tasmania.

Assumptions can be made that effective government intervention can reduce the number of people infected, whereas the local economy is severely impacted.

Insights:
1. When COVID-19 case are more than 10, government policy will be triggered.

2. Testing rate is very crucial to understanding the spread of the pandemic and responding appropriately.


   Introduction:        This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates a

Introduction:

This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates and government policies. Although government policy has brought the Covid-19 outbreak under control, it has had a negative impact on the financial system, and the increase in COVID-19 cases has had a negative impact on economic growth.

 

Assumptions:

The model is based on different infection rates, including infection rate, mortality rate, detection rate and recovery rate. There is a difference between a real case and a model. Since the model setup will only be initiated when 10 cases are reported, the impact on infection rates and economic growth will be reduced.

 

Interesting insights:

Even as infection rates fall, mortality rates continue to rise. However, the rise in testing rates and government health policies contribute to the stability of mortality. The model thinks that COVID-19 has a negative impact on offline industry and has a positive impact on online industry.

  LEIA ANTES DE COMEÇAR   Milhões de pessoas ao redor do mundo estão em QUARENTENA em função da pandemia COVID-19. Se adaptar à quarentena pode ser um PROBLEMA para muitas pessoas.   Nosso DESAFIO é construir um DIAGRAMA CAUSAL que analise este PROBLEMA que é ficar em quarentena. Vamos lá!?       PR

LEIA ANTES DE COMEÇAR

Milhões de pessoas ao redor do mundo estão em QUARENTENA em função da pandemia COVID-19. Se adaptar à quarentena pode ser um PROBLEMA para muitas pessoas.

Nosso DESAFIO é construir um DIAGRAMA CAUSAL que analise este PROBLEMA que é ficar em quarentena. Vamos lá!?


PRIMEIRA TAREFA (até dia 13 de maio)

1) Qual a variável CHAVE que você acha que pode definir o problema? Crie uma VARIÁVEL dentro do folder CHAVE.

2) Quais as outras variáveis SECUNDÁRIAS que estão relacionadas com este problema? Crie variáveis secundárias dentro dos FOLDER que melhor identifica o tipo da variável.


SEGUNDA TAREFA

No dia 15 de maio discutiremos virtualmente no Zoom, as variáveis propostas e faremos um DIAGRAMA CAUSAL RASCUNHO.


TERCEIRA TAREFA

No dia 22 de maio discutiremos virtualmente Zoom, o DIAGRAMA CAUSAL RASCUNHO objetivando construir o DIAGRAMA CAUSAL DEFINITIVO.