Insight diagram
COVID-19 in France
Insight diagram
COVID-19 Week 7
Insight diagram
Simula las condiciones para una población de 1 millón de habitantes
Covid-19
Insight diagram
Explanation of the Model

The sample model demonstrate the COVID-19 outbreak in Burnie, Tasmania appearing how the government reacts by executing important health approaches and the impacts on the economy of the region

Assumptions

The economic growth rate is subordinate on the extent of the populace who can be exposed. The number of COVID-19 cases adversely impacts the economy. The government arrangement is activated when the COVID-19 cases are 10 or above

Interesting Insights

1. There is a positive relationship between exposure to COVID- 19 and economic growth rate. Since the more individuals go out, the more trade activity takes place and that ultimately results economic growth

2. Expanding the testing rate results
- Higher cases being recognized
- Strict  government intervention
- Less deaths

BMA708_Assignment3_Md Shihabul Islam_548056
Insight diagram
Өзіндік жұмыс
10 months ago
Insight diagram
Covid-19 TAED
Insight diagram
Covid-19 Model самостоятельная1
Insight diagram
TPS pemodelan covid-19
Insight diagram
New SEIR COVID-19
Insight diagram
Environment, Health, & Business
Covid-19 Systemigram
Insight diagram
md fazle rabbi sm
Insight diagram
The Infection / Recovery & Immune / Rate of a Global a Population of 8.2 Billion People.
The Pandemic Management of COVID-19 - Richard A. Estefan
11 months ago
Insight diagram
COVID-19 SEIR Model for Indonesia
Insight diagram
Системная динамика COVID-19
Insight diagram

Overview:

The COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak, the impacts of government policy on both the COVID-19 outbreak and the GDP growth in Burnie.

Assumptions:

We set some variables at fix rates, including the immunity loss rate, recovery rate, death rate, infection rate and case impact rate, as they usually depend on the individual health conditions and social activities.

It should be noticed that we set the rate of recovery, which is 0.7, is higher than that of immunity loss rate, which is 0.5, so, the number of susceptible could be reduced over time.

Adjustments: (please compare the numbers at week 52)

Step 1: Set all the variables at minimum values and simulate

results: Number of Infected – 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.

Step 2: Increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate

results: Number of Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).

So, the increase of health policy, quarantine and travel restriction will help increase recovery, decrease confirmed cases, decrease death, but also decrease GDP.

Step 3: Increase the variables of Testing Rate to 0.4, others keep the same as step 2, and simulate

results: Number of Infected – 152 (down); Recovered – 243 (down); Cases – 1022 (up); Death – 17,625 (down); GDP – 824 (same).

So, the increase of testing rate will help to increase the confirmed cases.

Step 4: Change GDP Growth Rate to 0.14, Tourism Growth Rate to 0.02, others keep the same as step 3, and simulate

results: Number of Infected – 152 (same); Recovered – 243 (same); Cases – 1022 (same); Death – 17,625 (same); GDP – 6,632 (up).

So, the increase of GDP growth rate and tourism growth rate will helps to improve the GDP in Burnie.

COVID-19 Outbreak in Burnie Tasmania - Lin Ling 523592
Insight diagram
Clone of COVID-19
Insight diagram
Өзіндік жұмыс 2
Insight diagram
PROYECTO COVID-19
Insight diagram
2 өзіндік жұмыс
Insight diagram
covid 19 South Korea
Insight diagram
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
  1. http://www.nku.edu/~longa/classes/2020spring/mat375/mathematica/SIRModel-MAA.nb
  2. https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
Coronavirus: A Simple SIR (Susceptible, Infected, Recovered) with death
Insight diagram

Dieses Causal Loop Diagramm (CLD) versucht in vereinfachter Weisse die Wesentliche Dynamik des Mars-CoV-2 zu veranschaulichen. Der Motor hinter den Infektionen ist offensichtlich eine selbstverstärkende Rückkopplungsschleife, und ausschlaggebend in diesem Bezug ist der R-Wert. Wenn der R-Wert unter 1 liegt, dann heisst das, dass eine infizierte Person während des Zeitraums, in dem sie infektiös ist, weniger als eine andere Person infiziert.  Liegt der Wert über 1, dann steckt die Infizierte mehr als eine andere Person an, und das Virus verbreitet sich exponentiell. Die Schleifen, die blaue Pfeile enthalten, sind negative Rückkopplungsschleifen – sie bremsen die Verbreitung des Virus. Das Diagramm suggeriert, dass der R-Wert als Schlüssel zur Kontrolle der Verbreitung des Virus dienen könnte. Sollte der Wert über 1 steigen, so müssten  Schutzmassnahem eingeführt werden. Ist der Wert unter 1, dann sind die negativen Schleifen dominierend und einige Massnahmen könnten gelockert werden. 

Eine Systemische Sicht auf Covid-19
Insight diagram
Modèle simple de causalité entre mesures et impact
COVID-19