Insight diagram
An SIR model for Covid-19

This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.

Let's think about things on the scale of a week. What happens over a week?

With an Ro of 2 (2 people infected for each infected individual, over the course of a week); recovery rate of 1 (every infected person loses their infectiousness after a week), and resusceptible rate of .05 (meaning .05, or a twentieth of the recovered lose their immunity each week), the disease peaks -- does the wave, then waves again before the year is out, then ultimately becomes
"endemic" (that is, it's never going away, which is clear after two years -- that is, a time of 104 weeks). This is like our seasonal flu (only the disease in this simulation doesn't illustrate seasonality -- that requires a more complicated model).

With an Ro of .9, recovery rate of 1, and resusceptible rate of .05, the disease is eliminated.

Masking, social distancing (including quarantining following contact), and quarantines all serve to reduce infectivity. And if we can drive infectivity down far enough, the disease can be eliminated. Other things that help is slowing down the resusceptibility, by vaccinating. Vaccines (in general) impart an immune response that reduces -- or even eliminates -- your susceptibility. We are still learning the extent to which these vaccines impart long-term immunity.

Other tools at our disposal include Covid-19 treatments, which increase the recovery rate, and vaccinations, which reduce the resusceptible rate. These can also serve to help us eradicate a disease, so that it doesn't become endemic (and so plague us forever).

Andy Long
Mathematics and Statistics

Some resources:
  1. Wear a good mask: https://www.cdc.gov/coronavirus/2019-ncov/your-health/effective-masks.html
  2. Gotta catch those sneezes: https://www.dailymail.co.uk/sciencetech/article-8221773/Video-shows-26-foot-trajectory-coronavirus-infected-sneeze.html

MAT115 Covid Simulation
Insight diagram
Assignment 3 Norway Covid-19
Insight diagram
School project for data modell of the COVID-19 Virus
Corona - DE
Insight diagram
This model shows an SIR model of COVID-19 infection in the Philippines. The data used in this model are recent data from COVID-19 statistics reports this 2023.
Covid -19 Model
Insight diagram
COVID-19 in Brazil
Insight diagram
EL NIDO, PALAWAN COVID-19 CASES / MAY 15, 2021 

El Nido Population- 50495 
Infected- 96 
Recovires- 33

EL NIDO COVID-19 CASES
Insight diagram
SIR Modeling of Covid-19 in Cameroon
Insight diagram

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

SEIRD 02: COVID-19 spread with containment measures
Insight diagram
Simulación Covid-19
Insight diagram
A simple Susceptible - Infected - Recovered disease model.
Covid-19 in USA
Insight diagram
Simulation of how a virus infects after entering the body, how it replicates inside living cells, and how the body's immune system responds towards the virus
System Dynamic Model 1b (Previously-infected individual)
Insight diagram
Өзіңдік жұмыс 3 бөлім 1 тапсырма
Insight diagram
Das SEIRS(D)-Modell zum Simulieren der COVID-19 - Epidemie.
SEIR - COVID-19 (v.1) von Remigiusz Kinas
Insight diagram
Demo_Group3_COVID-19
Insight diagram
COVID-19 Kazakstan Abdrakhman
10 months ago
Insight diagram
COVID-19 в Бразилии за 2020-2024 года (динамика заболеваний)
3 months ago
Insight diagram
HW5 Version 1: Spread of COVID-19 in Cameroon
Insight diagram
COVID-19 cases in Barangay Candawaga, Municipality of Rizal
COVID-19 MODEL2 (OPERIANO, GLIANNE BETH O.)
Insight diagram

Description:

Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from the SIR model(susceptible, infected, recovered) to determine the effect of the covid-19 outbreak on economic outcomes via government policy.

Assumptions:

The government policy is triggered when the number of infected is more than ten.

The government policies will take a negative effect on Covid-19 outbreaks and the financial system.

Parameters:

We set some fixed and adjusted variables.

Covid-19 outbreak's parameter

Fixed parameter: Background disease.

Adjusted parameters: Infection rate, recovery rate. Immunity loss rate can be changed from vaccination rate.

Government policy's parameters

Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters

Fixed parameter: Tourism

Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

An increased vaccination rate and testing rate will decrease the number of infected cases and have a little more negative effect on the economic system. However, the financial system still needs a long time to recover in both cases.

BMA708_Assignment 3_Nguyen Dang Khoa Vo_520272_COVID-19 outbreak and Burnie economy
Insight diagram
Tentative model of criminal justice reform implemented during the COVID-19 pandemic in Baltimore, MD.

Task 1. implemented.
Baltimore Criminal Justice Rev. 4.1
Insight diagram
Examen - Covid-19 3ra ola
Insight diagram
This model bases on the SIR model aims to indicate the relationship between the lockdown policy of the government for combating with COVID-19 and the economic activity in Burnie Tasmania during the pandemic. 

This model assumes that more COVID-19 cases will lead to the more serious lockdown policy of the local government, which indirectly affect the economic activities and economic growth. The primary reason is that the lockdown policy force people to stay at home and reduce the chance to work and consume.

The simulation trend of the model is that the economy will keep a steady increase when the serious government policy reduces the COVID-19 spreading speed rate.

COVID-19 outbreak in Burnie model by LUJIN 517217
Insight diagram

Introduction:

This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates and government policies. Although government policy has brought the Covid-19 outbreak under control, it has had a negative impact on the financial system, and the increase in COVID-19 cases has had a negative impact on economic growth.

 

Assumptions:

The model is based on different infection rates, including infection rate, mortality rate, detection rate and recovery rate. There is a difference between a real case and a model. Since the model setup will only be initiated when 10 cases are reported, the impact on infection rates and economic growth will be reduced.

 

Interesting insights:

Even as infection rates fall, mortality rates continue to rise. However, the rise in testing rates and government health policies contribute to the stability of mortality. The model thinks that COVID-19 has a negative impact on offline industry and has a positive impact on online industry.

Model of COVID-19 outbreak in Burnie, Tasmania
Insight diagram
COVID-19 Model Indonesia