Model of Covid-19 Outbreak in Burnie, Tasmania    When reported COVID-19 cases begin to show a rapid increase, the government will initiate control policies to deal with the spread.As the number of people tested increases and measures such as isolation and medical assistance are implemented, the n

Model of Covid-19 Outbreak in Burnie, Tasmania

When reported COVID-19 cases begin to show a rapid increase, the government will initiate control policies to deal with the spread.As the number of people tested increases and measures such as isolation and medical assistance are implemented, the number of people infected will decline rapidly.Therefore, the government's policy is to reduce and eliminate sources of transmission by increasing the number of tests and initiating control measures.At the same time, it also shows the negative impact of economic growth, which according to the model will stop in the next 20 weeks.

Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators: Overall mortalityr ate (ratio of all deaths to all cases)  Resolved cases mortality rate (ratio of all deaths to recovered cases)     Assumed delays are:  5 weeks for recovery cases  2 weeks fo
Check how different times of recovery and deths in cases of covid-19 infulence 2 key mortality indicators:
Overall mortalityr ate (ratio of all deaths to all cases)
Resolved cases mortality rate (ratio of all deaths to recovered cases)

Assumed delays are:
5 weeks for recovery cases
2 weeks for death cases
Delays are built into conveyor stocks, so cannot be adjusted by slider

keep in mind Insigth uses similar but made-up numbers and linear flow of new cases (in opposition to exponential in real world)  
 An SIR model for Covid-19      This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.     Let's think about things on the scale of a week. What happens over a week?       With an Ro of 2 (2 people infected for each infec
An SIR model for Covid-19

This is a simple example of an SIR model for my Mathematics for Liberal Arts classes at Northern Kentucky University, Spring of 2022.

Let's think about things on the scale of a week. What happens over a week?

With an Ro of 2 (2 people infected for each infected individual, over the course of a week); recovery rate of 1 (every infected person loses their infectiousness after a week), and resusceptible rate of .05 (meaning .05, or a twentieth of the recovered lose their immunity each week), the disease peaks -- does the wave, then waves again before the year is out, then ultimately becomes
"endemic" (that is, it's never going away, which is clear after two years -- that is, a time of 104 weeks). This is like our seasonal flu (only the disease in this simulation doesn't illustrate seasonality -- that requires a more complicated model).

With an Ro of .9, recovery rate of 1, and resusceptible rate of .05, the disease is eliminated.

Masking, social distancing (including quarantining following contact), and quarantines all serve to reduce infectivity. And if we can drive infectivity down far enough, the disease can be eliminated. Other things that help is slowing down the resusceptibility, by vaccinating. Vaccines (in general) impart an immune response that reduces -- or even eliminates -- your susceptibility. We are still learning the extent to which these vaccines impart long-term immunity.

Other tools at our disposal include Covid-19 treatments, which increase the recovery rate, and vaccinations, which reduce the resusceptible rate. These can also serve to help us eradicate a disease, so that it doesn't become endemic (and so plague us forever).

Andy Long
Mathematics and Statistics

Some resources:
  1. Wear a good mask: https://www.cdc.gov/coronavirus/2019-ncov/your-health/effective-masks.html
  2. Gotta catch those sneezes: https://www.dailymail.co.uk/sciencetech/article-8221773/Video-shows-26-foot-trajectory-coronavirus-infected-sneeze.html

The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
8 months ago
   Introduction:        This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates a

Introduction:

This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates and government policies. Although government policy has brought the Covid-19 outbreak under control, it has had a negative impact on the financial system, and the increase in COVID-19 cases has had a negative impact on economic growth.

 

Assumptions:

The model is based on different infection rates, including infection rate, mortality rate, detection rate and recovery rate. There is a difference between a real case and a model. Since the model setup will only be initiated when 10 cases are reported, the impact on infection rates and economic growth will be reduced.

 

Interesting insights:

Even as infection rates fall, mortality rates continue to rise. However, the rise in testing rates and government health policies contribute to the stability of mortality. The model thinks that COVID-19 has a negative impact on offline industry and has a positive impact on online industry.

 About the Model   This model is a dynamic model which explains the relationship between the police of the government and the economy situation in Burnie Tasmania after the outbreak of Corona Virus.   This model is based on SIR model, which explains the dynamic reflection between the people who were
About the Model 
This model is a dynamic model which explains the relationship between the police of the government and the economy situation in Burnie Tasmania after the outbreak of Corona Virus.

This model is based on SIR model, which explains the dynamic reflection between the people who were susceptible, infected,deaths and recovered. 

Assumptions 
This model assumes that when the Covid-19 positive is equal or bigger than 10, the government policy can be triggered. This model assumes that the shopping rate in retail shops and the dining rates in the restaurants can only be influenced by the government policy.

Interesting Insights  

The government police can have negative influence on the infection process, as it reduced the possibility of people get infected in the public environments. The government policy has a negative effect on shopping rate in retail shops and the dining rate in the restaurants. 

However, the government policy would cause negative influence on economy. As people can not  shopping as normal they did, and they can not dinning in the restaurants. The retail selling growth rate and restaurant revenue growth rate would be reduced, and the economic situation would go worse. 
     Description:    
Model of Covid-19 outbreak in Burnie, Tasmania  This model was designed from the SIR
model(susceptible, infected, recovered) to determine the effect of the covid-19
outbreak on economic outcomes via government policy.    Assumptions:    The government policy is triggered when t

Description:

Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from the SIR model(susceptible, infected, recovered) to determine the effect of the covid-19 outbreak on economic outcomes via government policy.

Assumptions:

The government policy is triggered when the number of infected is more than ten.

The government policies will take a negative effect on Covid-19 outbreaks and the financial system.

Parameters:

We set some fixed and adjusted variables.

Covid-19 outbreak's parameter

Fixed parameter: Background disease.

Adjusted parameters: Infection rate, recovery rate. Immunity loss rate can be changed from vaccination rate.

Government policy's parameters

Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters

Fixed parameter: Tourism

Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

An increased vaccination rate and testing rate will decrease the number of infected cases and have a little more negative effect on the economic system. However, the financial system still needs a long time to recover in both cases.