Insight diagram
COVID-19 S&F PT1
Insight diagram
Самостоятельная работа COVID-19 2023г.
10 months ago
Insight diagram
The System Dynamics Model presents the the COVID-19 status in Сhina
Жангир Шаханов Covid-19 in china
Insight diagram
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
SEIR ABM MODEL
Insight diagram
COVID-19 in Japan 2020 самостоятельная работа
Insight diagram

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

SEIRD 02: COVID-19 spread with containment measures
Insight diagram
Agent based Modeling Simulation for Pandemic COVID-19 Disease
Covid-19(ABM)_VHK
Insight diagram
SEIR Model_John
Insight diagram
Simula las condiciones para una población de 1 millón de habitantes
Covid-19
Insight diagram
AGENT-BASED MODEL OF COVID-19
Insight diagram
Өзіңдік жұмыс дұрысы
Insight diagram
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
Ph_Covid19SDM_AngelKateCacayan
Insight diagram
This is the third in a series of models that explore the dynamics of infectious diseases. This model looks at the impact of two types of suppression policies. 

Press the simulate button to run the model with no policy.  Then explore what happens when you set up a lockdown and quarantining policy by changing the settings below.  First explore changing the start date with a policy duration of 60 days.
SIRD Epidemic Model with Suppression Policies
Insight diagram
Covid-19 in England
9 months ago
Insight diagram
Tugas Kelompok Teknik Pemodelan dan Simulasi
SIR Model Covid-19
Insight diagram
The System Dynamics Model presents the the COVID-19 status in Сhina
Covid-19 in China
Insight diagram
Covid-19 Russia
Insight diagram
Covid-19 in Italy
Insight diagram

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


COVID-19 Outbreak in Burnie Tasmania (Rajaa Sajjad, 538837)
Insight diagram
This model estimates the deaths due to COVID19 in Bangalore City. 
Assumptions:
City has a population = 80 Million
Initial infected population = 10
Probability of infection = 8%
Contact rate in population = 6
Average duration of recovery = 10 days
Death rate = 1%
Quarantine rate = 80%
Delay in quarantine = 5 days
COVID-19_SIR_MODEL