Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

Demo of population growth with distinct agents.    If you find these contributions meaningful your  sponsorship  would be greatly appreciated.
Demo of population growth with distinct agents.

If you find these contributions meaningful your sponsorship would be greatly appreciated.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

Demo of population growth with distinct agents.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
Demo of population growth with distinct agents.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

当处在春节时期,疫情来临时,外来人口较多的S市的疫情传染仿真模型。 人群的状态可分为S/E/I/R/D的五个状态,S为易感染者(即S市所在人群),E为潜伏期患者(人群不会对他远离,但是会传染他人),I为感染者(为医院确诊人群,他人会远离该患者),R为康复人群,D为死亡人群。
当处在春节时期,疫情来临时,外来人口较多的S市的疫情传染仿真模型。
人群的状态可分为S/E/I/R/D的五个状态,S为易感染者(即S市所在人群),E为潜伏期患者(人群不会对他远离,但是会传染他人),I为感染者(为医院确诊人群,他人会远离该患者),R为康复人群,D为死亡人群。
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 Een 'agent based model' voor de capaciteit voor het fixen van software bug. Het bevat drie klassen van bugs: Foutrisico, Fout en Opgelost.

Een 'agent based model' voor de capaciteit voor het fixen van software bug. Het bevat drie klassen van bugs: Foutrisico, Fout en Opgelost.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 This model is a classic instance of an Erlang Queuing Process.     We have the entities:  - A population of cars which start off in a "crusing" state;  - At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simu
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "crusing" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.     Understanding Relationship and Their Implications: The Essence of AND?
A random walk demonstration using an ABM. As individuals drink more they become more intoxicated and their walk becomes more random. And when they drink to much it finally kills them.

Demo of population growth with distinct agents.
Demo of population growth with distinct agents.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

10 months ago
Demo of population growth with distinct agents.    This insight is an element of the  Agent Based Modeling  learning module in  Systems KeLE .
Demo of population growth with distinct agents.

This insight is an element of the Agent Based Modeling learning module in Systems KeLE.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.