Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

11 months ago
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

11 months ago
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

3 11 months ago
This three loop goal-seeking structure identifies the three key influences on managing blood glucose for people with diabetes - insulin injections reduce blood glucose levels, exercise reduces blood glucose levels, and food increases blood glucose levels.  The balance of all three is necessary to ma
This three loop goal-seeking structure identifies the three key influences on managing blood glucose for people with diabetes - insulin injections reduce blood glucose levels, exercise reduces blood glucose levels, and food increases blood glucose levels.  The balance of all three is necessary to manage diabetes.
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Kelompok : Noor Siti Halimah, Dwi Haryani, RM Benediktus S.W  Main Citation:  Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.  
 Understanding diabetes population dynamics through simulation modeling  
 and experimentation. American Journal of Public Health 2006;96(3):488-494.

Kelompok : Noor Siti Halimah, Dwi Haryani, RM Benediktus S.W

Main Citation: 
Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.

Understanding diabetes population dynamics through simulation modeling

and experimentation. American Journal of Public Health 2006;96(3):488-494.

http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics to match description by Bergman 2021 article and Ch1 simulation exercise of Uri Alon's  System Medicine book . Layout similar to the  Insightmaker BIG Model  

Minimal model of glucose kinetics to match description by Bergman 2021 article and Ch1 simulation exercise of Uri Alon's System Medicine book. Layout similar to the Insightmaker BIG Model 

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

11 months ago
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

This three loop goal-seeking structure identifies the three key influences on managing blood glucose for people with diabetes - insulin injections reduce blood glucose levels, exercise reduces blood glucose levels, and food increases blood glucose levels.  The balance of all three is necessary to ma
This three loop goal-seeking structure identifies the three key influences on managing blood glucose for people with diabetes - insulin injections reduce blood glucose levels, exercise reduces blood glucose levels, and food increases blood glucose levels.  The balance of all three is necessary to manage diabetes.
8 months ago
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

This two loop goal-seeking structure identifies two factors to manage blood glucose for people with diabetes - insulin injections and exercise.
This two loop goal-seeking structure identifies two factors to manage blood glucose for people with diabetes - insulin injections and exercise.
9 months ago
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

11 months ago
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.