#### Clone of Isle Royale: Predator/Prey Model for Moose and Wolves

##### Marosi Balázs

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at

https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions

Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,

WolfDeathRateStart,

MooseBirthRateStart,

MooseDeathRateFactorStart,

moStart,

woStart} =

{0.000267409,

0.239821,

0.269755,

0.0113679,

591,

23.};

https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions

Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,

WolfDeathRateStart,

MooseBirthRateStart,

MooseDeathRateFactorStart,

moStart,

woStart} =

{0.000267409,

0.239821,

0.269755,

0.0113679,

591,

23.};

- 11 months 1 week ago

#### Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions

##### Austin Hardesty

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

- 1 year 10 months ago

#### Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Axel Kloß

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 2 months ago

#### Clone of Food Security and Climate Change in East Africa

##### Stefan Koester

- 2 years 4 months ago

#### Clone of Clone of Isle Royale: Predator Prey Interactions

##### nancy aziz

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 3 months ago

#### Clone of Isle Royale: Predator/Prey Model for Moose and Wolves

##### Clay Frink

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at

https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions

Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,

WolfDeathRateStart,

MooseBirthRateStart,

MooseDeathRateFactorStart,

moStart,

woStart} =

{0.000267409,

0.239821,

0.269755,

0.0113679,

591,

23.};

https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions

Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,

WolfDeathRateStart,

MooseBirthRateStart,

MooseDeathRateFactorStart,

moStart,

woStart} =

{0.000267409,

0.239821,

0.269755,

0.0113679,

591,

23.};

- 1 year 10 months ago

#### Clone of Predator Prey Interactions

##### Prabhas K Yadav

This model illustrates predator prey interactions using real-life data of fox and rabbit populations.

- 3 years 6 months ago

#### Clone of Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Chris S.

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 2 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Christopher Milesky

Experiment with adjusting the initial number of moose and wolves on the island.

- 1 year 10 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Taylor Nicole Koontz

Experiment with adjusting the initial number of moose and wolves on the island.

- 3 years 11 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Bernard Lo

Experiment with adjusting the initial number of moose and wolves on the island.

- 6 months 1 week ago

#### Clone of Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Laura Schäfer

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 2 months ago

#### Clone of Koala Populations

##### Erik

- 4 years 7 months ago

#### Clone of Wolf-Moose Population V1

##### Shayla Keteri

- 1 year 11 months ago

#### Clone of Clone of Isle Royale: Predator Prey Interactions

##### Roni Salim Maghames

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 3 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Scott Cates

Experiment with adjusting the initial number of moose and wolves on the island.

- 3 years 1 week ago

#### Clone of Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Omotunde Kasali

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 2 months ago

#### Clone of Clone of Isle Royale: Predator Prey Interactions

##### Stefan Koester

Experiment with adjusting the initial number of moose and wolves on the island.

- 3 years 2 months ago

#### Clone of Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Alexander Kinas

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 2 months ago

#### Clone of Isle Royale: Predator Prey Interactions

##### Lizzy Compton

Experiment with adjusting the initial number of moose and wolves on the island.

- 1 year 10 months ago

#### Clone of Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Sabina Dautaj

Experiment with adjusting the initial number of moose and wolves on the island.

- 4 years 2 months ago

#### Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions

##### Sally Dufek

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

- 1 year 10 months ago

#### Clone of (3) Copy of "Isle Royale: Predator Prey Interactions"

##### Ann Christin

Experiment with adjusting the initial number of moose and wolves on the island.

- 5 years 2 months ago

#### Clone of Final Midterm Student version of A More Realistic Model of Isle Royale: Predator Prey Interactions

##### Christopher Milesky

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:

Wolf Death Rate = 0.15

Wolf Birth Rate = 0.0187963

Moose Birth Rate = 0.4

Carrying Capacity = 2000

Initial Moose: 563

Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)

Moose death flow is Kill Rate (in Moose/Year)

Wolf birth flow is WBR*Kill Rate (in Wolves/Year)

Wolf death flow is WDR*W

- 1 year 10 months ago