Like previous models, this model shows the operation of a simple economy, the influence of changes in the consumption rate, and the effect of government intervention. In addition, this model shows changes in the hypothetical general price level. It gives an idea of changes in price trends based on c
Like previous models, this model shows the operation of a simple economy, the influence of changes in the consumption rate, and the effect of government intervention. In addition, this model shows changes in the hypothetical general price level. It gives an idea of changes in price trends based on changes in the quantity of money. NOTE: No general price level exists. Prices provide information for the exchange of individual economic goods.
This model also shows the operation of a simple economy. It differs from Model 1 primarily in the representation of all goods in the economy by units of measure of a higher level of abstraction. Thus, the same model can represent economies at different levels.  The simulation demonstrates how differ
This model also shows the operation of a simple economy. It differs from Model 1 primarily in the representation of all goods in the economy by units of measure of a higher level of abstraction. Thus, the same model can represent economies at different levels.

The simulation demonstrates how differing rates of consumption affect Savings.
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")  This model has one significant difference from Model 4. The  fractional consumption rat
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")

This model has one significant difference from Model 4. The fractional consumption rate table serves the purpose of demonstrating the effects of changes in the fractional consumption rate (or the converse the fractional rate of saving) from 100% to less-than 100% to more-than 100%.

It demonstrates dramatically the effects of significant changes in consumption rates.
A simple model of economic growth where a government taxes the economy, and spends it on capital and revenue goods.
A simple model of economic growth where a government taxes the economy, and spends it on capital and revenue goods.
Like Model 6 this model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)  In summary, government "spending" tends to slow growth of production and consumption.
Like Model 6 this model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)

In summary, government "spending" tends to slow growth of production and consumption.
Taken from Saeed, Khalid. ‘Limits to Growth Concepts in Classical Economics’. In  Feedback Economics: Economic Modeling with System Dynamics , edited by Robert Y. Cavana, Brian C. Dangerfield, Oleg V. Pavlov, Michael J. Radzicki, and I. David Wheat, 217–46. Cham: Springer International Publishing, 2
Taken from Saeed, Khalid. ‘Limits to Growth Concepts in Classical Economics’. In Feedback Economics: Economic Modeling with System Dynamics, edited by Robert Y. Cavana, Brian C. Dangerfield, Oleg V. Pavlov, Michael J. Radzicki, and I. David Wheat, 217–46. Cham: Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-67190-7_9.

Note that I haven't been able to reproduce the reported results!
The statement that there can be no economic activity
without  energy and that fossil fuels are
finite contrasts with the fact that money is not finite and can be created by governments
via their central banks at zero marginal cost whenever needed.

 An important fact about COAL, GAS and OIL (especia
The statement that there can be no economic activity without  energy and that fossil fuels are finite contrasts with the fact that money is not finite and can be created by governments via their central banks at zero marginal cost whenever needed.

An important fact about COAL, GAS and OIL (especially when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. The falling ratio 'EROI' (Energy Return on Energy Invested ) provides yet another warning that we can no longer rely on fossil fuels to power our economies. In 1940 it took the energy of only one barrel of oil to extract 100. Today the energy of 1 barrel of oil will yield only 15. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. An EROI of 1:1 means that it takes the energy of one barrel of oil to extract one barrel of oil - oil production would simply stop! 


This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)  In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the l
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run.
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")  In summary, lower rates of consumption (based on production) result in higher rates of
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run. Rates of consumption over 100% of production will diminish the savings stock and eventually cause rates of production and consumption to fall.
This model shows the operation of an extremely simple economy. The system produces and consumes each item (or good) at a fixed rate.  When production exceeds consumption, consumer goods accumulate in stocks. Trading may occur between actors in this system. That will not, however, affect the quantiti
This model shows the operation of an extremely simple economy. The system produces and consumes each item (or good) at a fixed rate.

When production exceeds consumption, consumer goods accumulate in stocks. Trading may occur between actors in this system. That will not, however, affect the quantities of the stocks of goods. It only affects ownership (not a concern of this model.)
This model shows the operation of a simple economy with two modifications made to Model 2 -- 1) feedback from production rate to consumption rate and 2) the use of a fractional rate input for calculating consumption rate.   In summary, lower fractional rates of consumption (based on production) resu
This model shows the operation of a simple economy with two modifications made to Model 2 -- 1) feedback from production rate to consumption rate and 2) the use of a fractional rate input for calculating consumption rate. 

In summary, lower fractional rates of consumption (based on production) result in higher levels of Savings.
Calculating EOQ using classical inventory model
Calculating EOQ using classical inventory model
Implementation of the Solow model of economic growth with labor enhancing technology.   parameters: s, alpha, delta, n, gA variables: Y. K, L, C, A per capita variables: y, k, c, a per capita and technology variables: y~, k~, c~ steady state variables: y~*, k~*, c~* all variables come with relative
Implementation of the Solow model of economic growth with labor enhancing technology.

parameters: s, alpha, delta, n, gA
variables: Y. K, L, C, A
per capita variables: y, k, c, a
per capita and technology variables: y~, k~, c~
steady state variables: y~*, k~*, c~*
all variables come with relative growth rates g

Features:

+steady state from beginning
+one time labor shock
+permanent savings quote shock
+permanent technological growth rate shock

Decreasing steady state variables when starting in steady state are numeric artifacts.
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse, the fractional rate of saving.) It also, unlike Models 2 & 3, shows the influence Savings has on the  production rate .  In summary, lower rates of co
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse, the fractional rate of saving.) It also, unlike Models 2 & 3, shows the influence Savings has on the production rate.

In summary, lower rates of consumption (based on production) result in higher rates of both production and consumption in the long-run.
 IM-168155  Summary of Ch 27 of Mitchell Wray and Watts Textbook see  IM-164967  for book overview with simplified Mike Radzicki's 2003 Evolutionary Economics history  article  added
IM-168155 Summary of Ch 27 of Mitchell Wray and Watts Textbook see IM-164967 for book overview with simplified Mike Radzicki's 2003 Evolutionary Economics history article added
WIP based mostly on Jan
Toporowski  2013 vol 1  and  2018 vol 2  books on Michal Kalecki: An Intellectual Biography   Layout Consistent with  David Wheat MacroEconomic model CLD Insight  by Gene Bellinger  
WIP based mostly on Jan Toporowski 2013 vol 1 and 2018 vol 2 books on Michal Kalecki: An Intellectual Biography  
Layout Consistent with David Wheat MacroEconomic model CLD Insight by Gene Bellinger  
A simple budget planning system.  What additional complexities can you add?
A simple budget planning system.  What additional complexities can you add?