This insight began as a March 22nd Clone of "Italian COVID 19 outbreak control"; thanks to  Gabo HN  for the original insight. The following links are theirs:      Initial data from:  Italian data [ link ] (Mar 4)  Incubation estimation [ link ]        Andy Long   Northern Kentucky University  May

Initial data from:
Italian data [link] (Mar 4)
Incubation estimation [link]

Northern Kentucky University
May 2nd, 2020

This is an update of our model from April 9th, 2020. As we prepare for our final exam, I read a story in The Guardian about Italy's struggle to return to normalcy. The final paragraphs:

During the debate in the Senate on Thursday, the opposition parties grilled Conte. Ex-prime minister Matteo Renzi, who has called for less restraint in the reopening, remarked, “The people in Bergamo and Brescia who are gone, those who died of the virus, if they could speak, they’d tell us to relaunch the country for them, in their honour.”

Renzi’s controversial statement was harshly criticised by doctors who warned that the spread of the disease, which, as of Thursday, had killed almost 30,000 people in the country and infected more than 205,000 [ael: my emphasis], was not over and that a misstep could take the entire country back to mid-March coronavirus levels.

“We risk a new wave of infections and outbreaks if we’re not careful,” said Tullio Prestileo, an infectious diseases specialist at Palermo’s Benefratelli Hospital. “If we don’t realise this, we could easily find ourselves back where we started. In that case, we may not have the strength to get back up again.”

I have since updated the dataset, to include total cases from February 24th to May 2nd. I went to Harvard's Covid-19 website for Italy  and and then to their daily updates, available at github. I downloaded the regional csv file for May 2nd,  which had regional totals (21 regions); I grabbed the column "totale_casi" and did some processing to get the daily totals from the 24th of February to the 2nd of May.

The cases I obtained in this way matched those used by Gabo HN.

The initial data they used started on March 3rd (that's the 0 point in this Insight).

You can get a good fit to the data through April 9th by choosing the following (and notice that I've short-circuited the process from the Infectious to the Dead and Recovered). I've also added the Infectious to the Total cases.

The question is: how well did we do at modeling this epidemic through May 2nd (day 60)? And how can we change the model to do a better job of capturing the outbreak from March 3rd until May 2nd?

Incubation Rate:  .025
R0: 3
First Lockdown: IfThenElse(Days() == 5, 16000000, 0)
Total Lockdown: IfThenElse(Days() >= 7, 0.7,0)

(I didn't want to assume that the "Total Lockdown" wasn't leaky! So it gets successively tighter, but people are sloppy, so it simply goes to 0 exponentially, rather than completely all at once.)

deathrate: .01
recoveryrate: .03

"Death flow": [deathrate]*[Infectious]
"Recovery flow": [recoveryrate]*[Infectious]

Total Reported Cases: [Dead]+[Surviving / Survived]+[Infectious]

Based on my student Sean's work, I altered the death rate to introduce the notion that doctors are getting better at saving lives:
[deathrate] = 0.02/(.0022*Days()^1.8+1)
I don't agree with this model of the death rate, but it was a start motivated by his work. Thanks Sean!:)

Resources:
  * Recent news: "Since the early days of the outbreak in China, scientists have known that SARS-CoV-2 is unusually contagious — more so than influenza or a typical cold virus. Scientific estimates of the reproduction number — the R0, which is the number of new infections that each infected person generates on average — have varied among different communities and different points but have generally been between 2 and 4. That is significantly higher than seasonal influenza."
 The model here shows the COVID-19 outbreaks in Burnie Tasmania, which has impacted in the local economy. the relationship between COVID-19 and economic situation has been shown in the graph. Based on the susceptible analysis, people who usual go out are might have chance to meet susceptible people
The model here shows the COVID-19 outbreaks in Burnie Tasmania, which has impacted in the local economy. the relationship between COVID-19 and economic situation has been shown in the graph. Based on the susceptible analysis, people who usual go out are might have chance to meet susceptible people and have a high rate to be infected. The period of spreading can be controlled by keeping social distance and Government lockdown policy. 

Susceptible can be exposed by go out.  resident has a possibility to infect and be infected by others. people who might be die due to the lack of immunity. and others would recover and get the immune. 

Beside, the economy situation is proportionate to the recovery rate. If there are more recovery rate from the pandemic, the employment rate will be increased and the economy situation will recover as well.   
 Model of Covid-19 outbreak in Burnie, Tasmania     This model was designed from SIR model(susceptible, infected, revovered) to find out the effect of covid-19 outbreak into economic outcomes via government policy.     Assumptions     The government policy is triggered when number of infected is mor
Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from SIR model(susceptible, infected, revovered) to find out the effect of covid-19 outbreak into economic outcomes via government policy.

Assumptions

The government policy is triggered when number of infected is more than ten.

The government policies will take negative effect into Covid-19 outbreaks and financial system

Parameters

We set some fixed and adjusted variables.
Covid-19 outbreak's parameter
Fixed parameters: Infection rate, Background disease, recovery rate.
Adjusted parameter: Immunity loss rate can be change from vaccination rate.

Government policy's parameters
Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters
Fixed parameter: Tourism
Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

Increase vaccination rate and testing rate will decrease the number amount of infected case and a little bit more negative effect to economic system. However economic system still need a long time to recover in both cases.
Tugas Pemodelan Transportasi Laut    Memodelkan persebaran pandemik covid-19 menggunakan insightmaker     Dosen pembimbing : Dr-Ing Ir. Setyo Nugroho
Tugas Pemodelan Transportasi Laut

Memodelkan persebaran pandemik covid-19 menggunakan insightmaker

Dosen pembimbing : Dr-Ing Ir. Setyo Nugroho
 Modelling of the SARS-Cov-2 viral outbreak using an SEIR model plus specific extensions to model demand for health and care resources.     The model includes biths and deaths, and migration to accommodate import and export of infected individuals from other areas.     Healthcare resources identifie
Modelling of the SARS-Cov-2 viral outbreak using an SEIR model plus specific extensions to model demand for health and care resources.

The model includes biths and deaths, and migration to accommodate import and export of infected individuals from other areas.

Healthcare resources identifies need for hospital beds and critical care.

The model is uses arrays to reflect the different impacts of modelled parameters by age and sex.
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

   Introduction:        This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates a

Introduction:

This model demonstrates the COVID-19 outbreak in Bernie, Tasmania, and shows the relationship between coVID-19 outbreaks, government policy and the local economy. The spread of pandemics is influenced by many factors, such as infection rates, mortality rates, recovery rates and government policies. Although government policy has brought the Covid-19 outbreak under control, it has had a negative impact on the financial system, and the increase in COVID-19 cases has had a negative impact on economic growth.

 

Assumptions:

The model is based on different infection rates, including infection rate, mortality rate, detection rate and recovery rate. There is a difference between a real case and a model. Since the model setup will only be initiated when 10 cases are reported, the impact on infection rates and economic growth will be reduced.

 

Interesting insights:

Even as infection rates fall, mortality rates continue to rise. However, the rise in testing rates and government health policies contribute to the stability of mortality. The model thinks that COVID-19 has a negative impact on offline industry and has a positive impact on online industry.

[The Model of COVID-19 Pandemic Outbreak in Burnie, TAS]   A model of COVID-19 outbreaks and responses from the government with the impact on the local economy and medical supply.      It is assumed that the government policy is triggered and rely on reported COVID-19 cases when the confirmed cases
[The Model of COVID-19 Pandemic Outbreak in Burnie, TAS]

A model of COVID-19 outbreaks and responses from the government with the impact on the local economy and medical supply. 

It is assumed that the government policy is triggered and rely on reported COVID-19 cases when the confirmed cases are 10 or less. 

Interesting insights
The infection rate will decline if the government increase the testing ranges, meanwhile,  the more confirmed cases will increase the pressure on hospital capacity and generate more demand for medical resources, which will promote government policy intervention to narrow the demand gap and  affect economic performance by increasing hospital construction with financial investment.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

2 months ago
Simulation of the spread of COVID-19 in Wuhan.
Simulation of the spread of COVID-19 in Wuhan.