Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.  The initial parametrization is based on the su

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

We add simple containment meassures that affect two paramenters, the Susceptible population and the rate to become infected.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

The questions that we want to answer in this kind of models are not the shape of the curves, that are almost known from the beginning, but, when this happens, and the amplitude of the shapes. This is crucial, since in the current circumstance implies the collapse of certain resources, not only healthcare.

The validation process hence becomes critical, and allows to estimate the different parameters of the model from the data we obtain. This simulation approach allows to obtain somethings that is crucial to make decisions, the causality. We can infer this from the assumptions that are implicit on the model, and from it we can make decisions to improve the system behavior.

Yes, simulation works with causality and Flows diagrams is one of the techniques we have to draw it graphically, but is not the only one. On https://sdlps.com/projects/documentation/1009 you can review soon the same model but represented in Specification and Description Language.

  Explanation   This model shows the COVID-19 outbreak in Burnie and how the government policy impacts the economy. The possible phases when the infectious disease spreads in Burnie can be labelled as Susceptible, Infection and Recovery, which are main factors in the model. It is concluded that the
Explanation
This model shows the COVID-19 outbreak in Burnie and how the government policy impacts the economy. The possible phases when the infectious disease spreads in Burnie can be labelled as Susceptible, Infection and Recovery, which are main factors in the model. It is concluded that the government policy can reduce the infectious disease and also the impact in the overall economy.

Assumption
The Government Healthy Policy will affect the decrease in the infection and economy growth rate at the same time.

The Government Health Policy is only triggered when there are more than 10 cases

The increase in number of COVID-19 cases can affect negatively towards the economic growth.

Interesting Insights:
The Government's vaccination promote will reduce the possibility of spreading the infectious disease. 

When vaccination rate increase, the dead, infected people and susceptible group will all decrease. This reveals that the crucial role in government's vaccination promote program.

When there is more than 10 confirmed cases, the government policies can effectively reduce the infections and the overall economic activities.


 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.  The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus.

The initial parametrization is based on the suggested current data. The initial population is set for Catalonia.

This diagram will map out the spread of the Coronavirus (SAR-CoV-2) and its complexities of health care.
This diagram will map out the spread of the Coronavirus (SAR-CoV-2) and its complexities of health care.
 Dieses Causal
Loop Diagramm (CLD) versucht in vereinfachter Weisse die Wesentliche Dynamik des
Mars-CoV-2 zu veranschaulichen. Der Motor hinter den Infektionen ist offensichtlich
eine selbstverstärkende Rückkopplungsschleife, und ausschlaggebend in diesem
Bezug ist der R-Wert. Wenn der R-Wert unter

Dieses Causal Loop Diagramm (CLD) versucht in vereinfachter Weisse die Wesentliche Dynamik des Mars-CoV-2 zu veranschaulichen. Der Motor hinter den Infektionen ist offensichtlich eine selbstverstärkende Rückkopplungsschleife, und ausschlaggebend in diesem Bezug ist der R-Wert. Wenn der R-Wert unter 1 liegt, dann heisst das, dass eine infizierte Person während des Zeitraums, in dem sie infektiös ist, weniger als eine andere Person infiziert.  Liegt der Wert über 1, dann steckt die Infizierte mehr als eine andere Person an, und das Virus verbreitet sich exponentiell. Die Schleifen, die blaue Pfeile enthalten, sind negative Rückkopplungsschleifen – sie bremsen die Verbreitung des Virus. Das Diagramm suggeriert, dass der R-Wert als Schlüssel zur Kontrolle der Verbreitung des Virus dienen könnte. Sollte der Wert über 1 steigen, so müssten  Schutzmassnahem eingeführt werden. Ist der Wert unter 1, dann sind die negativen Schleifen dominierend und einige Massnahmen könnten gelockert werden. 

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

The System Dynamics Model presents the the COVID-19 status in Сhina
The System Dynamics Model presents the the COVID-19 status in Сhina
Variant of the model "COVID-19 spread" made by Anxo-Lois Pereira and Miquel Martínez de Morentin, including reinfection, permanent immunity and Vaccines. Made for the subject of TAED.
Variant of the model "COVID-19 spread" made by Anxo-Lois Pereira and Miquel Martínez de Morentin, including reinfection, permanent immunity and Vaccines. Made for the subject of TAED.
 Model of Covid-19 outbreak in Burnie, Tasmania     This model was designed from SIR model(susceptible, infected, revovered) to find out the effect of covid-19 outbreak into economic outcomes via government policy.     Assumptions     The government policy is triggered when number of infected is mor
Model of Covid-19 outbreak in Burnie, Tasmania

This model was designed from SIR model(susceptible, infected, revovered) to find out the effect of covid-19 outbreak into economic outcomes via government policy.

Assumptions

The government policy is triggered when number of infected is more than ten.

The government policies will take negative effect into Covid-19 outbreaks and financial system

Parameters

We set some fixed and adjusted variables.
Covid-19 outbreak's parameter
Fixed parameters: Infection rate, Background disease, recovery rate.
Adjusted parameter: Immunity loss rate can be change from vaccination rate.

Government policy's parameters
Adjusted parameters: Testing rate(from 0.15 to 0.95), vaccination rate(from 0.3 to 1), travel ban(from 0 to 0.9), social distancing(from 0.1 to 0.8), Quarantine(from 0.1 to 0.9)

Economic's parameters
Fixed parameter: Tourism
Adjusted parameter: Economic growth rate(from 0.3 to 0.5)

Interesting insight

Increase vaccination rate and testing rate will decrease the number amount of infected case and a little bit more negative effect to economic system. However economic system still need a long time to recover in both cases.