THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER REL

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

THE MODEL IS ZONE SPECIFIC AS GLOBAL WEATHER IS NOT HOMOGENEOUS BUT A COLLECTION OF HEAT BUMBPS DEPENDENT ON POPULATION SIZE OF URBAN HEAT ISLANDS AND MASSED CONURBATIONS AND AGGLOMERATIONS 

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

 The complex
model reflects the COVID-19 outbreak in Burnie, Tasmania. The model explains
how the COVID-19 outbreak will influence the government policies and economic
impacts. The infected population will be based on how many susceptible, infected,
and recovered individuals in Burnie. It influences

The complex model reflects the COVID-19 outbreak in Burnie, Tasmania. The model explains how the COVID-19 outbreak will influence the government policies and economic impacts. The infected population will be based on how many susceptible, infected, and recovered individuals in Burnie. It influences the probability of infected population meeting with susceptible individuals.

The fatality rate will be influenced by the elderly population and pre-existing medical conditions. Even though individuals can recover from COVID-19 disease, some of them will have immunity loss and become part of the susceptible individuals, or they will be diagnosed with long term illnesses (mental and physical). Thus, these variables influence the number of confirmed cases in Burnie and the implementation of government policies.

The government policies depend on the confirmed COVID-19 cases. The government policies include business restrictions, lock down, vaccination and testing rate. These variables have negative impacts on the infection of COVID-19 disease. However, these policies have some negative effects on commercial industry and positive effects on e-commerce and medical industry. These businesses growth rate can influence the economic growth of Burnie with the economic

Most of the variables are adjustable with the slider provided below. They can be adjusted from 0 to 1, which illustrates the percentages associated with the specific variables. They can also be adjusted to three decimal points, i.e., from 0.1 to 0.001.


Assumptions

- The maximum population of Burnie is 20000.
- The maximum number of infected individuals is 100.
- Government policies are triggered when the COVID-19 cases reach 10 or above.
- The government policies include business restrictions, lock down, vaccination and testing rates only. Other policies are not being considered under this model.
- The vaccination policy implemented by the government is compulsory.
- The testing rate is set by the government. The slider should not be changed unless the testing rate is adjusted by the government.
- The fatality rate is influenced by the elderly population and pre-existing medical conditions only. Other factors are not being considered under this model.
- People who recovered from COVID-19 disease will definitely suffer form immunity loss or any other long term illnesses.
- Long term illnesses include mental illnesses and physical illnesses only. Other illnesses are not being considered under this model.
- Economic activities are provided with an assumption value of 1000.
- The higher the number of COVID-19 cases, the more negative impact they have on the economy of Burnie. 


Interesting Insights

A higher recovery rate can decrease the number of COVID-19 cases as well as the probability of infected population meeting with susceptible persons, but it takes longer for the economy to recover compared to a lower recovery rate. A higher recovery rate can generate a larger number of people diagnosed with long term illnesses.

Testing rate triggers multiple variables, such as government policies, positive cases, susceptible and infected individuals. A lower testing rate can decrease the COVID-19 confirmed cases, but it can increase the number of susceptible people. And a higher testing rate can trigger the implementation of government policies, thus decreasing the infection rate. As the testing rate has a strong correlation with the government policies, it can also influence the economy of Burnie. 

  Overview:   Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.      Variables   The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): D

Overview:

Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.


Variables

The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate etc. 


Assumptions:

From the model, it is apparent that government health policies directly affect the economic output of Burnie. A better health policy has proven to have a better economic condition for Burnie and verse versa.


In the COVID-19 model, some variables are set at fixed rates, including the immunity loss rate, recovery rate, death rate, infection rate, and case impact rate, as this is normally influenced by the individual health conditions and social activities.

Moving forward, we decided to set the recovery rate to 0.7, which is a rate above the immunity loss rate of 0.5, so, the number of susceptible could be diminished over time.


Step 1: Try to set all value variables at their lowest point and then stimulate. 

 

Outcome: the number of those Infected are– 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.


Step 2: Try to increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate


Outcome: The number of those Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).


With this analysis, it is obvious that the increase of health policy, quarantine, and travel restriction will assist in increase recovery rate, a decrease in confirmed cases, a reduction in death cases or fatality rate, but a decrease in Burnie GDP.


Step 3: Enlarge the Testing Rate to 0.4, variable, others, maintain the same as step 2, and simulate


Outcome: It can be seen that the number of Infected is down to – 152; those recovered down to – 243; overall cases up to – 1022; those that died down to–17,625; while the GDP remains – 824.


In this step, it is apparent that the increase of testing rate will assist to increase the confirmed cases.


Step 4: Try to change the GDP Growth Rate to 0.14, then Tourism Growth Rate to 0.02, others keep the same as step 3, and then simulate the model


Outcome: what happens is that the Infected number – 152 remains the same; Recovered rate– 243 the same; Number of Cases – 1022 (same); Death – 17,625 (same); but the GDP goes up to– 6,632. 


This final step made it obvious that the increase of GDP growth rate and tourism growth rate will help to improve the overall GDP performance of Burnie's economy.

 ​BACKGROUND:    The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015.      AXIS:          X-Axis  The X-Axis shows the time.
​BACKGROUND:

The following simulation model demonstrates the relationship between supply, demand and pricing within the real estate and housing world. I have based the model on a small city with a population of 100,000 residents as of 2015. 

AXIS:

X-Axis
The X-Axis shows the time. It begins in 2015 in the month of October and continues for 36 consecutive years. 

Y-Axis
There are 2 Y-Axis on this model. The left hand side relates to the price, demand, and supply, while the right hand side solely lists the population.

As you could see, this town has a population of 100,000 residents to-date. The bottom of the model shows a population loop that produces an exponential growth rate of 2.5%. This dynamic and growing city populates approximately 240,000 residents after 36 years.

MODEL

The model consists of 2 folders named: Buyers/Consumers & Suppliers/Producers. This first folder represents the 'Demand'. It includes a buyers growth rate, buyers interest increase and decrease, a price demand and the demand price. The formulas form an exponential rise in demand due to the rapid and continuous increase in population in this new city. As population increases, so does the demand from buyers. 

The second folder conveys the supply of houses. It includes a sophisticated loop of real estate. Residents who own houses in the market decide to sell the home. This becomes the Houses for sale, also known as the 'supply'. Those houses are sold and the sold houses re-enter the market and the loop continues. 

The supply has an inverse relationship with the price. When prices drop, supplies drop because the demand goes up. And when the price goes up, so does the supply. This will represent the growth of new houses in the market. 

PRICE

Note: The price is based on monthly rent rates.

The price is dependant on many variables. Most importantly, the supply and demand. It also includes factors such as expectations & the economic value of the house. I have included a stable, 'good' economic value for all homes as this fictional town is in a stable and growing area.

Price fluctuates throughout the entire simulation, however it also goes up in price. Over the years houses continue to rise in price while they regularly fluctuate. For example, in 2018 (3 years later), the max price for a home was: $4254.7 and min price was: $852.98. On the other hand, in October 2051 (36 years later), the max price was: $14906 and the min price was: $7661. (This is based on the following data: Houses for Sale: 500, Houses that have sold: 100, Houses in the Market: 730).

SLIDERS

There are 3 sliders on the bottom that could be altered. The simulation would react accordingly. The 3 sliders include changeable data on:
- Houses for Sale.
- Houses that have Sold.
- Houses in the Market.


Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model coupled to economics-based simulations from Y2k on.
Ocean/atmosphere/biosphere model coupled to economics-based simulations from Y2k on.
System Zoo Z409 Fishery dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources    Fishing is a classic example for use of a renewable resource. Unless overfished, fish populations If is hardly by fishing, then the fish population will persist at a constant
System Zoo Z409 Fishery dynamics from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources

Fishing is a classic example for use of a renewable resource. Unless overfished, fish populations If is hardly by fishing, then the fish population will persist at a constant size corresponding to its specific ecological envi­ ronment If the stock is overfished, the juvenile generation becomes too small to fully replace the adult generation. If overfishing continues. the population cannot recover and will collapse in short time. Even if fish catch stops now/, it could take decades until the fish population recovers to its original size if it hasn't become extinct meanwhile. In many of the world overtlshing has led, and still leads, to the complete collapse of formerly huge tlsh populations: herring in the North Sea, codtlsh in the Northern Atlantic. tuna, whales to name only a few. With the collapse of fish stocks came the collapse of the t1shing industry in many regions. Employment and
incomes disappeared: whole regions (like Newfoundland) lost their economic base.​
Map of SD work on Samuelson's 1939 model of the business cycle. See also D-memo D-2311-2 Gilbert Low 1976 and  IM-165713 . An alernative to the Ch 26 Macroeconomics textbook exposition.  From Gil Low's Multiplier Accelerator Model of Business Cycles, Ch 4 of Elements of the System Dynamics Method Bo
Map of SD work on Samuelson's 1939 model of the business cycle. See also D-memo D-2311-2 Gilbert Low 1976 and IM-165713. An alernative to the Ch 26 Macroeconomics textbook exposition.  From Gil Low's Multiplier Accelerator Model of Business Cycles, Ch 4 of Elements of the System Dynamics Method Book edited by Jorgen Randers 1976 (MIT Press) and 1980 (Productivity Press)