From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017  video .   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
This Insight model is the last in a series of models that examine the dynamics of population growth and decline in a simple environment.  The first model can be found  here.   It follows on from a series of three Insights that introduce the basic concepts of Systems Dynamics that can be found  here
This Insight model is the last in a series of models that examine the dynamics of population growth and decline in a simple environment.  The first model can be found here.  It follows on from a series of three Insights that introduce the basic concepts of Systems Dynamics that can be found here.

The model refines the concept of carrying capacity by introducing dynamic resources that the population depends on to thrive.

The models are based on the activities from an Open University short course that can be accessed here.
<!--[if gte mso 9]>
 
  
  
 
<![endif]-->

 Theory of Structural Change for IAMO Research Group      The part-whole paradigm 

 Examples of
research issues addressed here include the path dependence of farm structures,
regime shifts in land-system change, as well as transitional process
<!--[if gte mso 9]> <![endif]-->

Theory of Structural Change for IAMO Research Group


The part-whole paradigm

Examples of research issues addressed here include the path dependence of farm structures, regime shifts in land-system change, as well as transitional processes in the evolution of farm structures and innovation systems. All these issues feature counter-intuitive systemic properties that could not have been predicted using standard agricultural economics tools. The key strength of the research group in regard to the part-whole paradigm is the internationally renowned expertise in the agent-based modelling of agricultural policy. (More on what happened here until now / is happening now)

The system-environment paradigm

This paradigm is represented by conceptual research drawing inspiration from Niklas Luhmann’s theory of “complexity-reducing” and “operationally closed” social systems. The attributes of complexity reduction and operational closure are shown to generate sustainability problems, conflicts, social dilemmas, ethical issues, and divergent mental models. The organizing idea explaining these phenomena is the complexity-sustainability trade-off, i.e., the tendency of the operationally closed systems to develop excessive internal complexity that overstrains the carrying capacity of the environment. Until now, the conceptual work along these lines has focused on developing the systems-theoretic principles of ecological degradation and highlighted the sustainability-enhancing role of nonprofit organizations and corporate social responsibility. Another overarching topic has been the analysis of connections between Luhmann’s social systems theory and the evolutionary economics approaches, such as those of Thorstein Veblen and Kenneth Boulding. <!--[if gte mso 9]> Normal 0 false false false DE X-NONE X-NONE <![endif]--><!--[if gte mso 9]> <![endif]--><!--[if gte mso 10]> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:DE;} <![endif]-->
Any activity  requires the use of energy. Economic activity
is not possible without energy, 
especially fossil fuels. An increase in economic activity necessarily
leads to an increase in the use  fossil
fuels and greenhouse gas emissions. In addition there will   be a commensurate increase in waste
Any activity  requires the use of energy. Economic activity is not possible without energy,  especially fossil fuels. An increase in economic activity necessarily leads to an increase in the use  fossil fuels and greenhouse gas emissions. In addition there will   be a commensurate increase in waste products, pollution and heat. This is dictated by the laws of physics and unavoidable.  A problem arise when the cost of this degeneration caused by continual economic growth surpasses the benefit society derives from it. The ecological economist Professor Herman Daly (2014) explained that when the impact on the ecosystem is correctly measured, global growth has reached a point where the total private and social costs of economic growth outweigh the private and social benefits. In other words, more economic growth is making global society worse off overall - growth has become uneconomic! The model shows that eventually pressures will build up that counteract the perennial belief that all social ills can be solved with economic growth. 

Clone of IM-91683 from jacqui and vincy Summary of paper map produced by participants at the compelling case for prevention workshop 6 june 2017.     Current premier version containing Story Steps and text for vincy to update. This is clone of 97129 via Vincy.
Clone of IM-91683 from jacqui and vincy Summary of paper map produced by participants at the compelling case for prevention workshop 6 june 2017. 

Current premier version containing Story Steps and text for vincy to update.
This is clone of 97129 via Vincy.
 This
paper aims at describing a case where system dynamics modeling was used to evaluate
the effects of information and material supply lead-time variation on sales
contributions margins and operating cash conversion cycle of a commodity export
business.  An empirical dynamic model,
loaded with eco

This paper aims at describing a case where system dynamics modeling was used to evaluate the effects of information and material supply lead-time variation on sales contributions margins and operating cash conversion cycle of a commodity export business.  An empirical dynamic model, loaded with econometric theory of price effect on competitive demand, was used to describe the input data.  The model simulation outputs proved themselves relevant in analyzing the complex interconnections of multiple variables affecting  the profitability in a commercial routine, supporting the decision process among sales managers.

 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Capitalism is in crisis and climate
change disruption is now beginning to hit the bottom line. Insurance companies
know this well. According to a report by the Bank of England, insured losses
have risen from $10 000 million in 1985 to $50 000 million in 2015. Climate change
cannot be reversed, and e
Capitalism is in crisis and climate change disruption is now beginning to hit the bottom line. Insurance companies know this well. According to a report by the Bank of England, insured losses have risen from $10 000 million in 1985 to $50 000 million in 2015. Climate change cannot be reversed, and extreme weather events  will undoubtedly get worse in the future strengthening the disruptive effects shown in the CLD.  Another dynamic is that companies will continue to automate and, as The Economic Policy Institute has shown, fail to reflect  productivity gains in workers' salaries. The result, stagnating salaries is disastrous for demand, given that capitalism needs endlessly rising demand and consumption. A further serious problem is that as climate change gets worse there will be increasing demands for companies to assume their responsibility and bear the costs of negative externalities.  The CLD shows these factors which are likely to lead to the collapse of the system: when capitalism can no longer generate 'capital' it has stopped to serves any useful purpose.