Insight diagram
<!--[if gte mso 9]> <![endif]-->

Theory of Structural Change for IAMO Research Group


The part-whole paradigm

Examples of research issues addressed here include the path dependence of farm structures, regime shifts in land-system change, as well as transitional processes in the evolution of farm structures and innovation systems. All these issues feature counter-intuitive systemic properties that could not have been predicted using standard agricultural economics tools. The key strength of the research group in regard to the part-whole paradigm is the internationally renowned expertise in the agent-based modelling of agricultural policy. (More on what happened here until now / is happening now)

The system-environment paradigm

This paradigm is represented by conceptual research drawing inspiration from Niklas Luhmann’s theory of “complexity-reducing” and “operationally closed” social systems. The attributes of complexity reduction and operational closure are shown to generate sustainability problems, conflicts, social dilemmas, ethical issues, and divergent mental models. The organizing idea explaining these phenomena is the complexity-sustainability trade-off, i.e., the tendency of the operationally closed systems to develop excessive internal complexity that overstrains the carrying capacity of the environment. Until now, the conceptual work along these lines has focused on developing the systems-theoretic principles of ecological degradation and highlighted the sustainability-enhancing role of nonprofit organizations and corporate social responsibility. Another overarching topic has been the analysis of connections between Luhmann’s social systems theory and the evolutionary economics approaches, such as those of Thorstein Veblen and Kenneth Boulding. <!--[if gte mso 9]> Normal 0 false false false DE X-NONE X-NONE <![endif]--><!--[if gte mso 9]> <![endif]--><!--[if gte mso 10]> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:DE;} <![endif]-->
Insight diagram
COVID-19 Outbreak in Burnie Tasmania Simulation Model

Introduction:

This model simulates the COVID-19 outbreak situation in Burnie and how the government responses impact local economy. The COVID-19 pandemic spread is influenced by several factors including infection rate, recovery rate, death rate and government's intervention policies.Government's policies reduce the infection spread and also impact economic activities in Burnie, especially its tourism and local businesses.   

Assumptions: 

- This model was built based on different rates, including infection rate, recovery rate, death rate, testing rate and economic growth rate. There can be difference between 
this model and reality.

- This model considers tourism and local business are the main industries influencing local economy in Burnie.

- Government's intervention policies will positive influence on local COVID-19 spread but also negative impact on local economic activity.

- When there are more than 10 COVID-19 cases confirmed, the government policies will be triggered, which will brings effects both restricting the virus spread and reducing local economic growth.

- Greater COVID-19 cases will negatively influence local economic activities.

Interesting Insights:

Government's vaccination policy will make a important difference on restricting the infection spread. When vaccination rate increase, the number of deaths, infected people and susceptible people all decrease. This may show the importance of the role of government's vaccination policy.

When confirmed cases is more than 10, government's intervention policies are effective on reducing the infections, meanwhile local economic activities will be reduced.

Insight diagram

This model simulates a COVID outbreak occurring at Burnie, Tasmania. It links the extent to the pandemic with governments intervention policies aiming to limit the spread of the virus. The other part of the model illustrates how will the COVID statistics and the government enforcement jointly influence the economic environment in the community. A number of variables are taken into account, indicating positive or negative relationship in the infection and the economy model respectively.

 

Assumptions

·         Government takes responsive actions when the number of acquired cases exceeds 10.

·         Government’s prompt actions, involving closure of the state border, lockdown within the city, plans on mandatory vaccination and testing, effectively control the infection status.

·         Economic activities are reduced due to stagnation in statewide tourism, closure of brick-and-mortar businesses, and increased unemployment rate, as results of government restrictions.

 

Insights

Government’s rapid intervention can effectively reduce the infected cases. The national vaccination rollout campaign raises vaccination rate in Australians, and particularly influence the death rate in the infection model. Please drag the slider of vaccination to a higher rate and run the model to compare the outcomes.

Although local economy is negatively affected by government restriction policies, consumer demand in online shopping and government support payments neutralize the negative impact on economy and maintain the level of economic activities when infections get controlled.