Insight diagram
Verano, Mary Ann (Economic Data)
Insight diagram
Economic Assessment Model Virtualisation of Electric Substations
4 3 days ago
Insight diagram
Calculating EOQ using classical inventory model
Economic Order Quantity
Insight diagram
The housing market is heavily dependent on two main factors; supply and demand. Both play a major role in determining an equilibrium price for both sellers and buyers in the real estate market. 

Residents, or the general population of individuals, place significant reliance on financial institutions to provide sources of capital i.e mortgages, to fund their purchases of homes. The rate of interest charged by these organisations in turn gives buyers (consumers) purchasing power, creating demand. 

Supply is made up of the number of houses in the market, and consequently, of these, the number of houses which are up for sale. As the prices of houses for sale increases, the demand for purchase of these properties decreases. Conversely, the lower price, the higher the demand. Once the market reaches an equilibrium point, to which buyers and sellers form an agreement, houses are sold accordingly. An underlying factor to consider is the cost of construction, which impacts producers, or suppliers in this instance, and thus the number of homes for sale, and the expected profit sellers hope to achieve. 

The simulated graph highlights the common scenario within the housing market, to which we see that as price increases, the total number for houses for sale decreases, generating an opposite slope to the price. As the price for houses increases, the demand for the houses decreases and vice versa. The equilibrium is evident at time 14 whereby the price of houses and the number of houses for sale overlaps which in turn creates a market to which both buyers and sellers are happy.
The effect of Supply and Demand on the Housing Market Assignment 3 (43323871)
Insight diagram
Healthcare Economic System
Insight diagram
How education causes the gap between socio-economic status?
education causal loop
Insight diagram

Goodwin business cycle model, modified from Keen and Blatt

Goodwin Business Cycle
Insight diagram
WIP of several books of Karl Polanyi's thoughts and papers around social science economic history and capitalism. . See also Summary of the Great Transformation IM-10640
Karl Polanyi Holistic thinking
Insight diagram
Barangay IRAWAN Systems Model
Biophysical, Socio-cultural & Economic Data of Bgy. IRAWAN
Insight diagram
Verano, Mary Ann -Economic Data
Insight diagram
This model is to show the status of numbers of infected people, recovered people and deaths during COVID-19 in Burnie Australia. It also shows impact on the growth of economy. 

Variables
The infection rate and the percentage of people washing their hands are influencing the infected number of people. Also, there are death rate and recovery rate and immunity lost rate determining the numbers of deaths, recovered and infected-again people.  
for the economy growth, there are several factors, including unemployment rate, infection rate, economic growth rate and government health policy. 

Perspective
After some time, people will recovered, also the economic activities. 
A model of Burnie during COVID-19
Insight diagram
Solow model without external factors.
Solow Model
Insight diagram
​In a recent report, the World Economic Forum considered that the use of robots in economic activity will cause far more job losses in the near future than there will be new ones created. Every economic sector will be affected. The CLD tries to illustrate the dynamic effects of replacing human workers with robots. This  dynamic  indicates that if there is no replacement of the  income forgone by the laid off workers, then the economy will soon grind to a halt. To avoid disaster, there must be enough money in circulation, not parked in off-shore investments, to permit the purchase of all the goods and services produced by robots. The challenge for the government is to make sure that this is  case.  

ROBOTS AND A DISATROUS ECONOMIC DYNAMIC
Insight diagram

Simulation of Goodwin01 Minsky Model CLD in IM-172002 Compare with Part3 slide 3 of presentation in patreon. See extension Goodwin02 at IM-172145

Goodwin Minsky Simulation Keen Economic Dynamics Aug2019
Insight diagram
Circular equations WIP for Runy.

Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. Older version cloned at IM-46280
Circularity in Economic models including Exports and Imports
Insight diagram
ESI6550 Group 6 (Model 2)
10 months ago
Insight diagram
WIP based mostly on Jan Toporowski 2013 vol 1 and 2018 vol 2 books on Michal Kalecki: An Intellectual Biography  
Layout Consistent with David Wheat MacroEconomic model CLD Insight by Gene Bellinger  
Kalecki economic thought
Insight diagram
This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides.

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions.

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998).

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

Pesticide Use in Central America Model
Insight diagram
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp - https://insightmaker.com/user/16029 (Rutgers University) in support of the SESYNC Climate Learning Project.

Steve Conrad (Simon Fraser University) modified the model to include emission/development/and carbon targets for the use by ENV 221.
REM 221 Simple Climate-Carbon-Economic Model with Targets
Insight diagram
economic inequality
Insight diagram
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp (Rutgers University) in support of the SESYNC Climate Learning Project.
Simple Climate-Carbon-Economic Model
Insight diagram
ECONOMIC GROWTH feeds on itself, provided the growth engine is fed with materials and finance. In this highly simplified representation  some of the factors that influence economic growth are show in the incircled green fields. Governments can influence economic growth positively via investments  and payouts. The most obvious tool which governments can use to slow an overheated economy is taxation.

Economic Growth Engine
Insight diagram
This Insight Maker model illustrates the complex relationships involved in the destruction of rainforests. The reinforcing loop emphasizes the destructive cycle where economic development leads to increased deforestation, while the balancing loop highlights the negative consequences on biodiversity, climate, and economic activities, attempting to counteract the destructive forces. The model serves as a simplified representation to better understand the interconnected factors contributing to rainforest destruction and the importance of considering feedback loops in addressing environmental issues.
Destruction of Rainforests
Insight diagram
WIP Overview model structures of Khalid Saeed's 2014 WPI paper Jay Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs IM-168865
Jay Forrester's Disruptive Economic Models
11 months ago