To maintain economic wealth (roads, hospitals, power
lines, etc.) power needs to be consumed. The same applies to economic activity,
since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning
of fossil fuels was responsible for 79 percent of
To maintain economic wealth (roads, hospitals, power lines, etc.) power needs to be consumed. The same applies to economic activity, since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning of fossil fuels was responsible for 79 percent of U.S. greenhouse gas emissions in 2010. So whilst economic activity takes place fossil fuels will be burned and CO2 emissions are unavoidable - unless we use exclusively renewable energy resources, which is not likely to occur very soon. However, the increasing CO2 concentrations in the atmosphere will have negative consequences, such droughts, floods, crop failures, etc. These effects represent limits to economic growth. The CLD illustrates some of the more prominent negative feedback loops that act as a break on economic growth and wealth.  As the negative feedback loops (B1-B4) get stronger, an interesting question is, 'will a sharp reduction in economic wealth and unavoidable recession lead to wide-spread food riots and disturbances?'

 Goodwin business cycle  model , modified from Keen and Blatt

Goodwin business cycle model, modified from Keen and Blatt

WIP of several books of Karl Polanyi's thoughts and papers around social science economic history and capitalism. . See also Summary of the Great Transformation  IM-10640
WIP of several books of Karl Polanyi's thoughts and papers around social science economic history and capitalism. . See also Summary of the Great Transformation IM-10640
How education causes the gap between socio-economic status?
How education causes the gap between socio-economic status?
 This model is based on the article Dynamic modeling of Infectious Diseases, An application to Economic Evaluation of Influenza Vaccination Farmacoeconomics 2008, 26(1): 45-56 .  And EBOLA

This model is based on the article Dynamic modeling of Infectious Diseases, An application to Economic Evaluation of Influenza Vaccination Farmacoeconomics 2008, 26(1): 45-56 .

And EBOLA


Solow model without external factors.
Solow model without external factors.
4 11 months ago
Circular equations WIP for Runy.    Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. Older version cloned at  IM-46280
Circular equations WIP for Runy.

Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. Older version cloned at IM-46280
WIP based mostly on Jan
Toporowski  2013 vol 1  and  2018 vol 2  books on Michal Kalecki: An Intellectual Biography   Layout Consistent with  David Wheat MacroEconomic model CLD Insight  by Gene Bellinger  
WIP based mostly on Jan Toporowski 2013 vol 1 and 2018 vol 2 books on Michal Kalecki: An Intellectual Biography  
Layout Consistent with David Wheat MacroEconomic model CLD Insight by Gene Bellinger  
This model also shows the operation of a simple economy. It differs from Model 1 primarily in the representation of all goods in the economy by units of measure of a higher level of abstraction. Thus, the same model can represent economies at different levels.  The simulation demonstrates how differ
This model also shows the operation of a simple economy. It differs from Model 1 primarily in the representation of all goods in the economy by units of measure of a higher level of abstraction. Thus, the same model can represent economies at different levels.

The simulation demonstrates how differing rates of consumption affect Savings.
 ​In a recent report, the World Economic Forum
considered that the use of robots in economic activity will cause far more job
losses in the near future than there will be new ones created. Every economic
sector will be affected. The CLD tries to illustrate the dynamic effects of
replacing human work
​In a recent report, the World Economic Forum considered that the use of robots in economic activity will cause far more job losses in the near future than there will be new ones created. Every economic sector will be affected. The CLD tries to illustrate the dynamic effects of replacing human workers with robots. This  dynamic  indicates that if there is no replacement of the  income forgone by the laid off workers, then the economy will soon grind to a halt. To avoid disaster, there must be enough money in circulation, not parked in off-shore investments, to permit the purchase of all the goods and services produced by robots. The challenge for the government is to make sure that this is  case.  

Simple model of the global economy, the global carbon cycle, and planetary energy balance.    The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial c
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp - https://insightmaker.com/user/16029 (Rutgers University) in support of the SESYNC Climate Learning Project.

Steve Conrad (Simon Fraser University) modified the model to include emission/development/and carbon targets for the use by ENV 221.
This high-level
simulation model presented by Jay Forrester in his book  World Dynamics , simulates
socio-economic-environmental world system. The world Model was created in a
time where pollution and other negative effects of industrialization and
economic growth started to become recognized in 197
This high-level simulation model presented by Jay Forrester in his book World Dynamics, simulates socio-economic-environmental world system. The world Model was created in a time where pollution and other negative effects of industrialization and economic growth started to become recognized in 1970. For this exam purpose, we have rebuilt the model to do some experiments and analyze the results. 
WIP Overview model structures of Khalid Saeed's 2014  WPI paper  Jay
Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs  IM-168865
WIP Overview model structures of Khalid Saeed's 2014 WPI paper Jay Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs IM-168865
10 months ago
This model is an attempt to simulate what is commonly
referred to as the “pesticide treadmill” in agriculture and how it played out
in the cotton industry in Central America after the Second World War until
around the 1990s.  

 The cotton industry expanded dramatically in Central America
after WW2,
This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides.

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions.

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998).

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

Simpler view  IM-70351  combined with Economic View IM-69774  in preparation for integrating with Prevention Investment Framework  (private) IM  Reworked at  Multiscale simpler view IM
Simpler view IM-70351 combined with Economic ViewIM-69774 in preparation for integrating with Prevention Investment Framework (private) IM
Summary of Ch 27 of Mitchell Wray and Watts Textbook see  IM-164967  for book overview See  IM-169093  for added dynamic evolutionary economics history
Summary of Ch 27 of Mitchell Wray and Watts Textbook see IM-164967 for book overview See IM-169093 for added dynamic evolutionary economics history