This is a toy model of fractional reserve banking.    In the first period, there is foreign spending using domestic currency. This spending creates offshore banking reserves.  The offshore bank then lends to the domestic bank. In consequence, the banking sector captures all of yield on government de
This is a toy model of fractional reserve banking.

In the first period, there is foreign spending using domestic currency. This spending creates offshore banking reserves.  The offshore bank then lends to the domestic bank. In consequence, the banking sector captures all of yield on government debt.  
 IM-168155  Summary of Ch 27 of Mitchell Wray and Watts Textbook see  IM-164967  for book overview with simplified Mike Radzicki's 2003 Evolutionary Economics history  article  added
IM-168155 Summary of Ch 27 of Mitchell Wray and Watts Textbook see IM-164967 for book overview with simplified Mike Radzicki's 2003 Evolutionary Economics history article added
WIP Overview model structures of Khalid Saeed's 2014  WPI paper  Jay
Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs  IM-168865
WIP Overview model structures of Khalid Saeed's 2014 WPI paper Jay Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs IM-168865
9 months ago
WIP SD representation of Ch11 of their 2007 Monetary Economics book, as suggested by Adam K. Plan is to do a top down simple money flow SFC mmt model and successively split sectors. See also  essence of MMT IM  and  simpler version Ch3 IM
WIP SD representation of Ch11 of their 2007 Monetary Economics book, as suggested by Adam K. Plan is to do a top down simple money flow SFC mmt model and successively split sectors. See also essence of MMT IM and simpler version Ch3 IM
Simpler view  IM-70351  combined with Economic View IM-69774  in preparation for integrating with Prevention Investment Framework  (private) IM  Reworked at  Multiscale simpler view IM
Simpler view IM-70351 combined with Economic ViewIM-69774 in preparation for integrating with Prevention Investment Framework (private) IM
This model is an attempt to simulate what is commonly
referred to as the “pesticide treadmill” in agriculture and how it played out
in the cotton industry in Central America after the Second World War until
around the 1990s.  

 The cotton industry expanded dramatically in Central America
after WW2,
This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides.

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions.

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998).

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

ECONOMIC GROWTH feeds on itself, provided the   growth engine   is fed with materials and
finance. In this highly simplified representation  some of the factors that influence economic growth
are show in the incircled green fields. Governments can influence economic growth positively
via investments
ECONOMIC GROWTH feeds on itself, provided the growth engine is fed with materials and finance. In this highly simplified representation  some of the factors that influence economic growth are show in the incircled green fields. Governments can influence economic growth positively via investments  and payouts. The most obvious tool which governments can use to slow an overheated economy is taxation.

Circular equations WIP for Runy.    Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. Older version cloned at  IM-46280
Circular equations WIP for Runy.

Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. Older version cloned at IM-46280
 Wealth can be seen as the factories,
infrastructure, goods and services the population of a nation dispose of. According
to Tim Garrett,  a scientist who looks at
the economy from the perspective of physics, it is existing wealth that generates
economic activity and growth. This growth demands the

Wealth can be seen as the factories, infrastructure, goods and services the population of a nation dispose of. According to Tim Garrett,  a scientist who looks at the economy from the perspective of physics, it is existing wealth that generates economic activity and growth. This growth demands the use of energy as no activity can take place without its use. He also points out that the use of this energy unavoidably  leads to concentrations of CO2 in the atmosphere.  All this, Tim Garrett says,  follows from the second law of thermodynamics.  If wealth decreases then so does economic activity and growth. The CLD tries to illustrate how wealth, ironically, now generates the conditions and feedback loops  that  may cause it to decline. The consequences are  inevitably economic  stagnation (or secular recession?). 

You can read about the connection Tim Garrett makes between 'Wealth, Economic Growth, Energy and CO2  Emissions' simply by Googling 'Tim Garrett and Economy'.

Simple model of the global economy, the global carbon cycle, and planetary energy balance.    The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial c
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp (Rutgers University) in support of the SESYNC Climate Learning Project.
Calculating EOQ using classical inventory model
Calculating EOQ using classical inventory model
Simulating Hyperinflation for 3650 days.  If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here,
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
Simple model of the global economy, the global carbon cycle, and planetary energy balance.    The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial c
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp - https://insightmaker.com/user/16029 (Rutgers University) in support of the SESYNC Climate Learning Project.

Steve Conrad (Simon Fraser University) modified the model to include emission/development/and carbon targets for the use by ENV 221.
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)  In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the l
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run.
Solow model without external factors.
Solow model without external factors.
4 11 months ago