Insight diagram
Healthcare Economic System
Insight diagram
How education causes the gap between socio-economic status?
education causal loop
Insight diagram

This model is designed for the local government of Burnie, Tasmania, aiming to help with balancing COIVD-19 and economic impacts during a possible outbreak. 

The model has been developed based upon the SIR model (Susceptible, Infected, Recovered) model used in epidemiology. 

It lists several possible actions that can be taken by the government during a COVID-19 outbreak and provide the economic impact simulation. 

The model allow users to Change the government policies factors (Strength of Policies) and simulate the total economic impact.

Interestingly, the government plicies largely help with controlling the COVID outbreak. However, the stronger the policies are, the larger impact on local economy

Burnie Covid Model, Zilin Huang 533476
Insight diagram

Goodwin business cycle model, modified from Keen and Blatt

Goodwin Business Cycle
Insight diagram
This model simulates the economics of buying a home. It was created to compare buying a home against using investment returns to pay for rent.

Try cloning this insight, setting the parameter values for real-world scenarios, and then running sensitivity analysis (see tools) to determine the likely wealth outcomes. Compare buying a home to renting. Note that each run will keep the parameters the same while simulating market volatility.

version 1.8
Home buying simulation 1.8
Insight diagram
WIP of several books of Karl Polanyi's thoughts and papers around social science economic history and capitalism. . See also Summary of the Great Transformation IM-10640
Karl Polanyi Holistic thinking
Insight diagram

Economic capital growth in a system constrained by a non-renewable resource, Figure 37 from Thinking in Systems by Donella H. Meadows

REM 221 Figure 37. Economic capital
Insight diagram
This page provides a structural analysis of POTUS Candidate Rick Perry's economic policy based on the information at: https://rickperry.org/issues/​ The method used is Integrative Propositional Analysis (IPA) available: ​ http://scipolicy.org/uploads/3/4/6/9/3469675/wallis_white_paper_-_the_ipa_answer_2014.12.11.pdf
DRAFT IPA of Rick Perry economic policy
Insight diagram
Economic model
Insight diagram
Solow model without external factors.
Solow Model
Insight diagram
Overview of Part G Ch 27 to 30 of Mitchell Wray and Watts Textbook see IM-164967 for book overview
History of Macroeconomic Thought
Insight diagram
​In a recent report, the World Economic Forum considered that the use of robots in economic activity will cause far more job losses in the near future than there will be new ones created. Every economic sector will be affected. The CLD tries to illustrate the dynamic effects of replacing human workers with robots. This  dynamic  indicates that if there is no replacement of the  income forgone by the laid off workers, then the economy will soon grind to a halt. To avoid disaster, there must be enough money in circulation, not parked in off-shore investments, to permit the purchase of all the goods and services produced by robots. The challenge for the government is to make sure that this is  case.  

ROBOTS AND A DISATROUS ECONOMIC DYNAMIC
Insight diagram
WIP based mostly on Jan Toporowski 2013 vol 1 and 2018 vol 2 books on Michal Kalecki: An Intellectual Biography  
Layout Consistent with David Wheat MacroEconomic model CLD Insight by Gene Bellinger  
Kalecki economic thought
Insight diagram

Simulation of Goodwin01 Minsky Model CLD in IM-172002 Compare with Part3 slide 3 of presentation in patreon. See extension Goodwin02 at IM-172145

Goodwin Minsky Simulation Keen Economic Dynamics Aug2019
Insight diagram
Circular equations WIP for Runy.

Added several versions of the model. Added a flow to make C increase. Added a factor to be able to change the value 0.5. Older version cloned at IM-46280
Circularity in Economic models including Exports and Imports
Insight diagram
This Insight Maker model illustrates the complex relationships involved in the destruction of rainforests. The reinforcing loop emphasizes the destructive cycle where economic development leads to increased deforestation, while the balancing loop highlights the negative consequences on biodiversity, climate, and economic activities, attempting to counteract the destructive forces. The model serves as a simplified representation to better understand the interconnected factors contributing to rainforest destruction and the importance of considering feedback loops in addressing environmental issues.
Destruction of Rainforests
Insight diagram
This model also shows the operation of a simple economy. It differs from Model 1 primarily in the representation of all goods in the economy by units of measure of a higher level of abstraction. Thus, the same model can represent economies at different levels.

The simulation demonstrates how differing rates of consumption affect Savings.
Simple Economy: Model 2
Insight diagram
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp - https://insightmaker.com/user/16029 (Rutgers University) in support of the SESYNC Climate Learning Project.

Steve Conrad (Simon Fraser University) modified the model to include emission/development/and carbon targets for the use by ENV 221.
REM 221 Simple Climate-Carbon-Economic Model with Targets
Insight diagram
This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides.

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions.

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998).

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

Pesticide Use in Central America Model
Insight diagram
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp (Rutgers University) in support of the SESYNC Climate Learning Project.
Simple Climate-Carbon-Economic Model
Insight diagram
ECONOMIC GROWTH feeds on itself, provided the growth engine is fed with materials and finance. In this highly simplified representation  some of the factors that influence economic growth are show in the incircled green fields. Governments can influence economic growth positively via investments  and payouts. The most obvious tool which governments can use to slow an overheated economy is taxation.

Economic Growth Engine
Insight diagram
Ocean/atmosphere/biosphere model tuned for interactive economics-based simulations from Y2k on.
This Scenario hits Affluence (1% decrease per annum) to increase decarbonization of energy
Final Project 2 W/ Socio-Economic Factors - Reinvestment Scenario
Insight diagram
WIP Overview model structures of Khalid Saeed's 2014 WPI paper Jay Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs IM-168865
Jay Forrester's Disruptive Economic Models
11 months ago