Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.  
 Understanding diabetes population dynamics through simulation modeling  
 and experimentation. American Journal of Public Health 2006;96(3):488-494. 
  http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.

Understanding diabetes population dynamics through simulation modeling

and experimentation. American Journal of Public Health 2006;96(3):488-494.

http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

 A simple glucose regulation causal loop diagram taken from Richard O. Foster, 1970: The Dynamics of blood sugar regulation, MSc thesis, MIT Dept of Electrical Engineering, available on the MIT System Dynamics Group Literature Collection and in the MIT Electronic Libraries. See  IM-587  for Addition

A simple glucose regulation causal loop diagram taken from Richard O. Foster, 1970: The Dynamics of blood sugar regulation, MSc thesis, MIT Dept of Electrical Engineering, available on the MIT System Dynamics Group Literature Collection and in the MIT Electronic Libraries. See IM-587 for Addition of Glucagon

 Kelompok : Noor Siti Halimah, Dwi Haryani, RM Benediktus S.W  Main Citation:  Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.  
 Understanding diabetes population dynamics through simulation modeling  
 and experimentation. American Journal of Public Health 2006;96(3):488-494.

Kelompok : Noor Siti Halimah, Dwi Haryani, RM Benediktus S.W

Main Citation: 
Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.

Understanding diabetes population dynamics through simulation modeling

and experimentation. American Journal of Public Health 2006;96(3):488-494.

http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

 Kelompok : Noor Siti Halimah, Dwi Haryani, RM Benediktus S.W  Main Citation:  Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.  
 Understanding diabetes population dynamics through simulation modeling  
 and experimentation. American Journal of Public Health 2006;96(3):488-494.

Kelompok : Noor Siti Halimah, Dwi Haryani, RM Benediktus S.W

Main Citation: 
Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.

Understanding diabetes population dynamics through simulation modeling

and experimentation. American Journal of Public Health 2006;96(3):488-494.

http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

Simple goal seeking loop for type 1 diabetes, describing relationship between blood glucose level, insulin injections, and food consumption, seeking to achieve healthy balanced blood glucose levels in the body.
Simple goal seeking loop for type 1 diabetes, describing relationship between blood glucose level, insulin injections, and food consumption, seeking to achieve healthy balanced blood glucose levels in the body.
 Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.  
 Understanding diabetes population dynamics through simulation modeling  
 and experimentation. American Journal of Public Health 2006;96(3):488-494. 
  http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.

Understanding diabetes population dynamics through simulation modeling

and experimentation. American Journal of Public Health 2006;96(3):488-494.

http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

 Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.  
 Understanding diabetes population dynamics through simulation modeling  
 and experimentation. American Journal of Public Health 2006;96(3):488-494. 
  http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.

Understanding diabetes population dynamics through simulation modeling

and experimentation. American Journal of Public Health 2006;96(3):488-494.

http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

 Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker     Glucose Insulin Model Info:  Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Spr

Created in James Madison University's ISAT 341 Simulation and Modeling course by Joseph Straub and Andrew Funkhouser. Based on Mark Heffernan's Glucose-Insulin Insight Maker


Glucose Insulin Model Info:

Translated from Hormone.stm in Dynamic Modeling in the Health Sciences James L hargrove, Springer 1998, Ch 24 p255-261, by Mark Heffernan.

This two loop goal-seeking structure identifies two factors to manage blood glucose for people with diabetes - insulin injections and exercise.
This two loop goal-seeking structure identifies two factors to manage blood glucose for people with diabetes - insulin injections and exercise.
 Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.  
 Understanding diabetes population dynamics through simulation modeling  
 and experimentation. American Journal of Public Health 2006;96(3):488-494. 
  http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

Jones AP, Homer JB, Murphy DL, Essien JDK, Milstein B, Seville DA.

Understanding diabetes population dynamics through simulation modeling

and experimentation. American Journal of Public Health 2006;96(3):488-494.

http://ajph.aphapublications.org/cgi/content/abstract/96/3/488

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

7 months ago
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

 Modelo da adição da ação do hormônio glucagon para controlar a homeostase da glicose (baseado no modelo  IM-586 ).

Modelo da adição da ação do hormônio glucagon para controlar a homeostase da glicose (baseado no modelo IM-586).

 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.