Clone pannirbrof Biogas to Energy | Insight Maker  https://insightmaker.com/insight/114792/Clone-pannirbrof-Biogas-to-Energy   Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus conce
Clone pannirbrof Biogas to Energy | Insight Maker https://insightmaker.com/insight/114792/Clone-pannirbrof-Biogas-to-Energy 
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.


Ecocity model , Joanna 

 This story presents a conceptual model of nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow invo

This story presents a conceptual model of nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

How the 4-H club became a marketing thingy for DuPont
How the 4-H club became a marketing thingy for DuPont
 Drifting Goals archetype for pressure to lower standards impacting efforts to reduce pollution and improve current air quality.  @ LinkedIn ,  Twitter ,  YouTube

Drifting Goals archetype for pressure to lower standards impacting efforts to reduce pollution and improve current air quality.

@LinkedInTwitterYouTube

This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Primary production model with phytoplankton as a state variable, force by light and nutrients. Model expanded to include bivalves.
Primary production model with phytoplankton as a state variable, force by light and nutrients. Model expanded to include bivalves.
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

112 2 weeks ago
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
DRAFT conceptual model of climate change connections in Yamuna river project.
DRAFT conceptual model of climate change connections in Yamuna river project.
11 2 months ago








 Fooodwaste happens everywhere and in every part
of the food cycle even if nobody wants it to happen.  

 We created a  local solution  to
reduce the waste. This solution is situated in Belgium (Kotrijk) where an
exchange system (for services) already exists and it is called letsleie  http:/

Fooodwaste happens everywhere and in every part of the food cycle even if nobody wants it to happen. 

We created a local solution to reduce the waste. This solution is situated in Belgium (Kotrijk) where an exchange system (for services) already exists and it is called letsleie http://www.letsleie.be.  We did choose letstlei because their exchange system doesn’t work with money but with a fictive money system "vlasbloemen". In their system we want to integrate the exchange of food leftovers. After some years the system could become world wide. 

Our solution begins with an event in a neighbourhood or apartments. This event brings the neighbours together who don't know each anymore. It explains the existing system and the problems of the food waste. Every person had to take a leftover and chefs will create a delicious meal of it. The members will receive a food box who is biodegradable and contains a QR code that will simplify the food/ service exchange. 

 People will talk to each other after the event and more and more people will join without needing new publicity.

This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.  Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows
This model simulates the growth of carp in an aquaculture pond, both with respect to production and environmental effects.

Both the anabolism and fasting catabolism functions contain elements of allometry, through the m and n exponents that reduce the ration per unit body weight as the animal grows bigger.

The 'S' term provides a growth adjustment with respect to the number of fish, so implicitly adds competition (for food, oxygen, space, etc).

 Carp are mainly cultivated in Asia and Europe, and contribute to the world food supply.

Aquaculture currently produces sixty million tonnes of fish and shellfish every year. In May 2013, aquaculture production overtook wild fisheries for human consumption.

This paradigm shift last occurred in the Neolithic period, ten thousand years ago, when agriculture displaced hunter-gatherers as a source of human food.

Aquaculture is here to stay, and wild fish capture (fishing) will never again exceed cultivation.

Recreational fishing will remain a human activity, just as hunting still is, after ten thousand years - but it won't be a major source of food from the seas.

The best way to preserve wild fish is not to fish them.
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
 This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is an updated working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This model depicts a very simplified series of interactions between water quality inspectors and cannabis cultivators in northern California.
This model depicts a very simplified series of interactions between water quality inspectors and cannabis cultivators in northern California.