Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Eastern oyster growth model calibrated for Long Island Sound  This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)  1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;
Eastern oyster growth model calibrated for Long Island Sound

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
 This insight displays some of the main factors effecting the decreasing koala population in South East Queensland, the measures put in place to stop their extinction, and the possible measures that could be taken to further help the conservation effort.

This insight displays some of the main factors effecting the decreasing koala population in South East Queensland, the measures put in place to stop their extinction, and the possible measures that could be taken to further help the conservation effort.
 WIP Stock Flow representation of Panarchy Adaptive Cycles

WIP Stock Flow representation of Panarchy Adaptive Cycles

This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.  The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occ
This model provides a dynamic simulation of the Sverdrup (1953) paper on the vernal blooming of phytoplankton.

The model simulates the dynamics of the mixed layer over the year, and illustrates how it's depth variation leads to conditions that trigger the spring bloom. In order for the bloom to occur, production of algae in the water column must exceed respiration.

This can only occur if vertical mixing cannot transport algae into deeper, darker water, for long periods, where they are unable to grow.

Sverdrup, H.U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Exp. Mer, 18: 287-295
 Students in ENVS 270 Online at the University of Arizona: please click Clone Insight at the top to make an editable copy of this model.    As initially proposed by Pr. William M White of Cornell University:    http://www.geo.cornell.edu/eas/education/course/descr/EAS302/302_06Lab11.pdf    http://ww
Students in ENVS 270 Online at the University of Arizona: please click Clone Insight at the top to make an editable copy of this model.

As initially proposed by Pr. William M White of Cornell University:
Simple energy balance model of a planet with albedo, ocean, and atmosphere.  This simulation models the stock and flow of energy between a
star, a planet’s surface (primarily its oceans, which are the largest reservoir
of heat), and space.The assumptions governing this model are:  1. The planet abso
Simple energy balance model of a planet with albedo, ocean, and atmosphere.

This simulation models the stock and flow of energy between a star, a planet’s surface (primarily its oceans, which are the largest reservoir of heat), and space.The assumptions governing this model are:

1. The planet absorbs a fraction of the shortwave radiation arriving from its star, with that fraction given by (1-A), where A is albedo. 

2. The planet radiates longwave infrared radiation into space, with the amount of radiation into space given by σΤe4, where σ is the Stefan-Boltzmann constant and Te is the temperature of the effective radiating level.

3. The atmospheric lapse rate is 6 K/km.

4. If there is an imbalance between shortwave radiation absorbed and longwave radiation emitted, the imbalance affects the temperature of the planet. However, it does not do so instantaneously – the imbalance must heat or cool the mixed layer of the ocean.

5. At the start of the simulation, the planet is extremely close to equilibrium given its default parameters. If any of these parameters are changed, the planet will be out of equilibrium, and will have to adjust.

 Similar layout to  CEU insight  based on 2016 Land Use Science  article  on Causal Analysis by Patrick Meyfroidt This is focussed on causal chains

Similar layout to CEU insight based on 2016 Land Use Science article on Causal Analysis by Patrick Meyfroidt This is focussed on causal chains

This is a simulation that represents the populations of lions in the world over the last 200 years.
This is a simulation that represents the populations of lions in the world over the last 200 years.
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?
Two households with PV systems and Electric Vehicles, sharing a battery and connected to the grid. What are the advantages?


Model of how different features impact water supply and how water access disparity can influence conflict.
Model of how different features impact water supply and how water access disparity can influence conflict.
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017  video .   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
9 last month
 for more information, contact Dr. Ann Stapleton at: stapletona@uncw.edu     Description:    A simple model for breeding plants from generation to generation, with one "yield" variable (e.g. height) and 4 combinations of plants from the parents. Simulation tracks the frequencies of each combination
for more information, contact Dr. Ann Stapleton at: stapletona@uncw.edu

Description:

A simple model for breeding plants from generation to generation, with one "yield" variable (e.g. height) and 4 combinations of plants from the parents. Simulation tracks the frequencies of each combination in each generation as well as the overall average height by generation.

Adjust all sliders before beginning simulation. Make sure the A1A2 parameters are equal to the A2A1 parameters.