A simulation illustrating simple predator prey dynamics. You have two populations.

A simulation illustrating simple predator prey dynamics. You have two populations.

This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
Clone of Pesticide Use in Central America for Lab work        This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.     The cotto
Clone of Pesticide Use in Central America for Lab work


This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides. 

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions. 

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998). 

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

To calculate the emission from mobile sources (road traffic) in DKI Jakarta, Indonesia
To calculate the emission from mobile sources (road traffic) in DKI Jakarta, Indonesia
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
This diagram provides an accessible description of the key processes that influence the water quality within a lake.
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.
This model implements the equations proposed by Ketchum in 1954. The rationale behind the concept is that only phytoplankton that grows above a certain rate will not be flushed out of an estuary.  For biological processes:  Pt  =  Po exp(kt)  Where Pt is the phytoplankton biomass at time t, Po is th
This model implements the equations proposed by Ketchum in 1954. The rationale behind the concept is that only phytoplankton that grows above a certain rate will not be flushed out of an estuary.

For biological processes:

Pt  =  Po exp(kt)

Where Pt is the phytoplankton biomass at time t, Po is the initial biomass, and k is the growth rate.

For physical processes:

Pm  =  Po (1-r)^m

Where Pm is the phytoplankton biomass after m tidal cycles, and r is the exchange ratio (proportion of estuary water which does not return each tidal cycle).

By substitution, and replacing t by m in the first equation, we get:

Pm = Poexp(km).(1-r)^m

For phytoplankton to exist in an estuary, Pm = Po (at least), i.e. 1 / (1-r)^m = exp(km)
ln(1) - m.ln(1-r) = km
-m.ln(1-r) = km
k = -ln(1-r)

Ketchum (1954) Relation between circulation and planktonic populations in estuaries. Ecology 35: 191-200.

In 2005, Ferreira and co-workers showed that this balance has direct implications on biodiversity of estuarine phytoplankton, and discussed how this could be relevant for water management, in particular for the EU Water Framework Directive 60/2000/EC (Ecological Modelling, 187(4) 513-523).
This model illustrates predator prey interactions using real-life data of bison and wolf populations at Yellowstone National Park.
This model illustrates predator prey interactions using real-life data of bison and wolf populations at Yellowstone National Park.


This model implements a very simple proxy for vertical dispersion of heat in a lake based on the equation:  dT/dt = 1/A d(EA)/dz (dT/dz)  where: T: temperature (oC); t: time (days); z: depth (m); A: cross-sectional area (m2); E: vertical dispersion coefficient (m2 d-1)  If we consider that E is cons
This model implements a very simple proxy for vertical dispersion of heat in a lake based on the equation:

dT/dt = 1/A d(EA)/dz (dT/dz)

where: T: temperature (oC); t: time (days); z: depth (m); A: cross-sectional area (m2); E: vertical dispersion coefficient (m2 d-1)

If we consider that E is constant (it is in this model), then the equation becomes dT/dt = (EA/A)(d^2T/dz^2) = E(d^2T/dz^2), the classic diffusion equation

The model is simplified by exchanging temperature as a state variable, rather than executing  the full heat balance. This would require a computation of fluxes of atmospheric longwave and shortwave radiation, water longwave radiation, water conduction and convection, and water evaporation and condensation.

The vertical dispersion coefficients are adjusted artificially so that mixing increases at lower temperatures, thus quickly homogenizing the water column in colder months of the year.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version adds diagenesis, using an extra state variable (ph
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version adds diagenesis, using an extra state variable (phosphorus in the sediment) and incorporates desorption processes that release phosphorus trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low P concentration in lake
2. High loading, increasing P concentration in lake
3. Desorption rate is low, P in sediment increases
4. Measures implemented for source control, loading reduces
5. P in lake gradually decreases, but below a certain point, desorption increases, and lake P concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
  My model is on global population and its impact on the availability of natural resources. The stocks in my system include food availability, soil resources and water resource availability. One question I believe my model can address is, what are the connections between food availability, soil reso

My model is on global population and its impact on the availability of natural resources. The stocks in my system include food availability, soil resources and water resource availability. One question I believe my model can address is, what are the connections between food availability, soil resources and water resource availability; or in other words, are these stocks influenced equally by variables?  I hope to show a direct correlation between all three of these stocks. Food availability as stated in The Impact of Population Growth on Food Supplies and the Environment stated that, “The continued production of an adequate food supply is directly dependent on ample fertile land, fresh water, energy, plus the maintenance of biodiversity.” As population continues to grow so will the inputs to natural resources including water, fertilizer, and the need to have more available land.  What is more astonishing is that if these natural resources are never completely tapped dry, on a per capita perspective availability these resources will decline on astronomical levels since it has to be split amongst people (Pimental et al, 1996).



The flows in my system include food production,drought, water pollution, and greenhouse gases. I picked drought as a flow since it directly impacts the level of water available. Take for instance in California, the five year drought has caused scarcity and triggered state-wide executive orders to conserve water (California Department of Water Resources, 2017). Drought and water pollution can be affected by the number of people living in a country, which is why I picked these elements as flows. Furthermore food production, water pollution and greenhouse gases have strong influences on the availability of natural resources.


I picked mortality rates, birth rates, water scarcity, and industrial development as my variables. Since birth rates and mortality rates vary depending on the country I picked these as variables on my system since population growth is influenced by these variables.   Impact of Population Growth describes how the U. S. is already being affected by population growth, as stated here, “In populous industrial nations such as the United States, most economies of scale are already being exploited; we are on the diminishing returns part of most of the important curves.”


I have decided to change “developed countries” and undeveloped countries” as stocks to variables since these factors actually act more like variables. One question I hope to address with my model is how developed countries can  reduce their impact on resources? Furthermore, Population growth rate does depend on whether a country is developed versus undeveloped, so a country's level of economic development is more of a variable. I have decided to change food production from a stock to a flow, since it seems to be more of a flow that might affect the level of a stock of available food. I have also changed water scarcity from a stock to a variable because it actually affects the flow of water into an overall stock of fresh drinking water


World4 is a predictive model for world population. Population has grown hyper-exponentially in the last millenium, with the doubling time decreasing from 900 years  in 1000 CE to a minimum of ~35 years in 1963 CE. Technology is defined as that which decreases the death rate and/or increases the effe
World4 is a predictive model for world population. Population has grown hyper-exponentially in the last millenium, with the doubling time decreasing from 900 years  in 1000 CE to a minimum of ~35 years in 1963 CE. Technology is defined as that which decreases the death rate and/or increases the effective birth rate (i.e. by decreasing infant mortality). Technology grows exponentially, therefore population fits a hyper-exponential (exponent within an exponent). Models for the end of growth are explored using equations that express the ways humans are depleting Earth's biocapacity, the nature of resource depletion, and the relationship between natural resources and human carrying capacity. This simple model, containing just two closed systems, captures the subtle shifts in the population trajectory of the last 50 years. Specifically, hyperexponential growth has given way to subexponential growth. A peak is predicted for the time around 2028.  [Bystroff, C. (2021). Footprints to singularity: A global population model explains late 20th century slow-down and predicts peak within ten years. PloS one, 16(5), e0247214.]
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
 Economic growth cannot go on forever, although politicians and most economist
seem to think so. The activity involved in economic growth necessarily  generates entropy (disorder and environmental degradation). Entorpy in turn generates powerful negative feedback loops which will, as
a response from

Economic growth cannot go on forever, although politicians and most economist seem to think so. The activity involved in economic growth necessarily  generates entropy (disorder and environmental degradation). Entorpy in turn generates powerful negative feedback loops which will, as a response from nature, ensure that economic activity will eventually grind to a complete halt.  In these circumstances organised society cannot persist and will collapse. The negative feedback loops shown in this graph have already started to operate. The longer economic growth continues unabated, the more powerful these negative feedback loops will become. How long can economic growth continue before it is overwhelmed? It may not be very far in the future.