​Força de arrasto linear referências:      CREF - Velocidade das gotas de chuva. 27 de abril, 2020. É verdade que as gotas de chuva sempre caem com a mesma velocidade devido a gravidade?  Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/   https://www.if.ufrgs.br/novocref/?co
​Força de arrasto linear referências:

CREF - Velocidade das gotas de chuva. 27 de abril, 2020. É verdade que as gotas de chuva sempre caem com a mesma velocidade devido a gravidade? Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/

CREF - Velocidade de pedras de granizo no solo. 22 de outubro, 2015. Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/

 Silveira, F. (2015). Velocidade das pedras de granizo Hailstone speed. https://doi.org/10.13140/RG.2.2.33619.94245

https://www.researchgate.net/publication/339536656_Velocidade_das_pedras_de_granizo_Hailstone_speed


Aula 10 - Velocidade Terminal 

Aerodinâmica da Bola de Futebol: da Copa de 70 à Jabulani Carlos Eduardo Aguiar Programa de Pós-Graduação em Ensino de Física Instituto de Física - UFRJ

Número de Reynolds


Aula 5.2 - Origem física do arrasto linear e quadrático: o número de Reynolds. Mecânica Clássica UFF Prof. Jorge de Sá Martins 

Viscosidade, turbulência e tensão superficial - IF UFRJ
 
Sugestões de Modelagem (Leonardo):

Revista Brasileira de Ensino de Física, vol. 41, nº 3 (2019) É seguro atirar para cima? Uma analise da letalidade de projéteis subsônicos. Saulo Luis Lima da Silva, Herman Fialho Fumiã.

FRENAGEM DE UM PROJÉTIL EM UM MEIO FLUIDO: “QUAL SERIA A DISTÂNCIA, DENTRO DA ÁGUA, PERCORRIDA POR UM PROJÉTIL CALIBRE .50 COM MASSA DE 50 G E VELOCIDADE DE 850 M/S?”  Fernando Lang da Silveira Instituto de Física – UFRGS 


This shows the motion of a mass suspended from a spring. An accurate solution requires a small time step and RK4 as the integration algorithm.
This shows the motion of a mass suspended from a spring. An accurate solution requires a small time step and RK4 as the integration algorithm.
  Path of a ball either dropped or thrown up vertically
Path of a ball either dropped or thrown up vertically
 An airplane has a constant acceleration from its turbins and opposed to it air friction
An airplane has a constant acceleration from its turbins and opposed to it air friction
 Dieses Modell beschreibt die Dynamik des Wasserlösens. Siehe dazu das Video "Harnflussmessung"  https://youtu.be/EgOaPAEmXo0
Dieses Modell beschreibt die Dynamik des Wasserlösens. Siehe dazu das Video "Harnflussmessung"
https://youtu.be/EgOaPAEmXo0
6 months ago
 Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example  IM-9010

Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example IM-9010

 
  Um ponto
material percorre uma trajetória circular de raio R = 20m com movimento uniformemente variado e
aceleração escalar a = 5m/s². Sabendo-se que no instante
t = 0 sua velocidade escalar é nula, determine no instante t = 2s os módulos da:   a) Velocidade vetorial;  b) Aceleração tangencial;

Um ponto material percorre uma trajetória circular de raio R = 20m com movimento uniformemente variado e aceleração escalar a = 5m/s². Sabendo-se que no instante t = 0 sua velocidade escalar é nula, determine no instante t = 2s os módulos da:

a) Velocidade vetorial;

b) Aceleração tangencial;

c) Aceleração centrípeta;

d) Aceleração vetorial.

Fonte: (RAMALHO,NICOLAU E TOLEDO; Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Movimento Vertical no Vácuo.

 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

This shows the motion of a simple harmonic oscillator, described in terms of the natural frequency of oscillation. An accurate solution requires a small time step and RK4 as the integration algorithm.
This shows the motion of a simple harmonic oscillator, described in terms of the natural frequency of oscillation. An accurate solution requires a small time step and RK4 as the integration algorithm.
Detalhes sobre o modelo disponíveis em artigo intitulado: A contrastação
 empírica de um modelo teórico sobre o movimento de corpos com massa 
variável como uma forma de promover discussões epistemológicas em aulas 
de Física​ Autores: Leonardo Albuquerque Heidemann (IF/UFRGS); Ricardo Robinson Camp
Detalhes sobre o modelo disponíveis em artigo intitulado: A contrastação empírica de um modelo teórico sobre o movimento de corpos com massa variável como uma forma de promover discussões epistemológicas em aulas de Física​
Autores: Leonardo Albuquerque Heidemann (IF/UFRGS); Ricardo Robinson Campomanes Santana (UFMT/Sinop); Ives Solano Araujo (IF/UFRGS).
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System. Zusätzlich wird al
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System.
Zusätzlich wird als Gedankenexperiment die Reibungskraft die durch ein hypothetisches umgebenes Medium entsteht eingeführt und die Auswirkung auf die Chaotizität gezeigt.
  object is projected with an initial velocity u at an angle to the horizontal direction.  We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantiti

object is projected with an initial velocity u at an angle to the horizontal direction.

We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantities. The acceleration due to gravity 'g' will be negative as it acts downwards.

h=v_ox*t-g*t^2/2

l=v_oy*t
Thanks to  https://insightmaker.com/insight/1830/Rossler-Chaotic-Attractor for this example of chaos, and the  transition  to chaos. "After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic
Thanks to
https://insightmaker.com/insight/1830/Rossler-Chaotic-Attractor
for this example of chaos, and the transition to chaos. "After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior."

We're looking into environmental applications in our course, and how dramatically dynamics can change, based on a small change in parameters. Climate change "suffers" this chaotic behavior, we fear, and we're going to be "taken by surprise" when the dynamics changes on us suddenly....

Andy Long
 Perceptual Control Theory Model of Balancing an Inverted Pendulum. See  Kennaway's slides  on Robotics. as well as PCT example WIP notes. Compare with  IM-1831  from Z209 from Hartmut Bossel's System Zoo 1 p112-118

Perceptual Control Theory Model of Balancing an Inverted Pendulum. See Kennaway's slides on Robotics. as well as PCT example WIP notes. Compare with IM-1831 from Z209 from Hartmut Bossel's System Zoo 1 p112-118

Simulation der Umlaufbahn der Erde um die Sonne
Simulation der Umlaufbahn der Erde um die Sonne
 Schwingkreis mit Generator: Erzwungene Schwingung   UG = UL + UC + UR
Schwingkreis mit Generator: Erzwungene Schwingung
UG = UL + UC + UR
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simmuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System. Zusätzlich wir al
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simmuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System.
Zusätzlich wir als Gedankenexperiment die Reibungskraft die durch ein hypothetisches umgebenes Medium entsteht eingeführt und die Auswirkung auf die Chaotizität gezeigt.