​Lab 4 for Physics PHY201  Simulating a spherical projectile approaching the speed of light.
​Lab 4 for Physics PHY201
Simulating a spherical projectile approaching the speed of light.
 ​Lab 2 for Physics PHY201  Simulating a spherical projectile released with an initial velocity of 0 m/s that experiences both forces of gravity and air drag.
​Lab 2 for Physics PHY201
Simulating a spherical projectile released with an initial velocity of 0 m/s that experiences both forces of gravity and air drag.
This shows the motion of a mass suspended from a spring, with damping. An accurate solution requires a small time step and RK4 as the integration algorithm.
This shows the motion of a mass suspended from a spring, with damping. An accurate solution requires a small time step and RK4 as the integration algorithm.
 ​Lab 2 for Physics PHY201  Simulating a spherical projectile released with an initial velocity of 0 m/s that experiences both forces of gravity and air drag.
​Lab 2 for Physics PHY201
Simulating a spherical projectile released with an initial velocity of 0 m/s that experiences both forces of gravity and air drag.
 Schwingkreis mit Generator: Erzwungene Schwingung   UG = UL + UC + UR
Schwingkreis mit Generator: Erzwungene Schwingung
UG = UL + UC + UR
Just a basic example of heat flow between two reservoirs at 100 degrees and 0 degrees.
Just a basic example of heat flow between two reservoirs at 100 degrees and 0 degrees.
 Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example  IM-9010

Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example IM-9010

Detalhes sobre o modelo disponíveis em artigo intitulado: A contrastação
 empírica de um modelo teórico sobre o movimento de corpos com massa 
variável como uma forma de promover discussões epistemológicas em aulas 
de Física​ Autores: Leonardo Albuquerque Heidemann (IF/UFRGS); Ricardo Robinson Camp
Detalhes sobre o modelo disponíveis em artigo intitulado: A contrastação empírica de um modelo teórico sobre o movimento de corpos com massa variável como uma forma de promover discussões epistemológicas em aulas de Física​
Autores: Leonardo Albuquerque Heidemann (IF/UFRGS); Ricardo Robinson Campomanes Santana (UFMT/Sinop); Ives Solano Araujo (IF/UFRGS).
 ​Força de arrasto linear referências:      CREF - Velocidade das gotas de chuva. 27 de abril, 2020. É verdade que as gotas de chuva sempre caem com a mesma velocidade devido a gravidade?  Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/   https://www.if.ufrgs.br/novocref/?co
​Força de arrasto linear referências:

CREF - Velocidade das gotas de chuva. 27 de abril, 2020. É verdade que as gotas de chuva sempre caem com a mesma velocidade devido a gravidade? Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/

CREF - Velocidade de pedras de granizo no solo. 22 de outubro, 2015. Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/

 Silveira, F. (2015). Velocidade das pedras de granizo Hailstone speed. https://doi.org/10.13140/RG.2.2.33619.94245

https://www.researchgate.net/publication/339536656_Velocidade_das_pedras_de_granizo_Hailstone_speed


Aula 10 - Velocidade Terminal 

Aerodinâmica da Bola de Futebol: da Copa de 70 à Jabulani Carlos Eduardo Aguiar Programa de Pós-Graduação em Ensino de Física Instituto de Física - UFRJ

Número de Reynolds


Aula 5.2 - Origem física do arrasto linear e quadrático: o número de Reynolds. Mecânica Clássica UFF Prof. Jorge de Sá Martins 

Viscosidade, turbulência e tensão superficial - IF UFRJ
 
Sugestões de Modelagem (Leonardo):

Revista Brasileira de Ensino de Física, vol. 41, nº 3 (2019) É seguro atirar para cima? Uma analise da letalidade de projéteis subsônicos. Saulo Luis Lima da Silva, Herman Fialho Fumiã.

FRENAGEM DE UM PROJÉTIL EM UM MEIO FLUIDO: “QUAL SERIA A DISTÂNCIA, DENTRO DA ÁGUA, PERCORRIDA POR UM PROJÉTIL CALIBRE .50 COM MASSA DE 50 G E VELOCIDADE DE 850 M/S?”  Fernando Lang da Silveira Instituto de Física – UFRGS 


Model describing a simple pendulum with exact equation (but without dampening).
Model describing a simple pendulum with exact equation (but without dampening).
 
  Um ponto
material percorre uma trajetória circular de raio R = 20m com movimento uniformemente variado e
aceleração escalar a = 5m/s². Sabendo-se que no instante
t = 0 sua velocidade escalar é nula, determine no instante t = 2s os módulos da:   a) Velocidade vetorial;  b) Aceleração tangencial;

Um ponto material percorre uma trajetória circular de raio R = 20m com movimento uniformemente variado e aceleração escalar a = 5m/s². Sabendo-se que no instante t = 0 sua velocidade escalar é nula, determine no instante t = 2s os módulos da:

a) Velocidade vetorial;

b) Aceleração tangencial;

c) Aceleração centrípeta;

d) Aceleração vetorial.

Fonte: (RAMALHO,NICOLAU E TOLEDO; Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Movimento Vertical no Vácuo.

Flugbahn eines Federballs - Simulation und Messung (Tracker Video Analysis and Modeling Tool)
Flugbahn eines Federballs - Simulation und Messung (Tracker Video Analysis and Modeling Tool)
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simmuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System. Zusätzlich wir al
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simmuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System.
Zusätzlich wir als Gedankenexperiment die Reibungskraft die durch ein hypothetisches umgebenes Medium entsteht eingeführt und die Auswirkung auf die Chaotizität gezeigt.
  Path of a ball either dropped or thrown up vertically
Path of a ball either dropped or thrown up vertically
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System. Zusätzlich wird al
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System.
Zusätzlich wird als Gedankenexperiment die Reibungskraft die durch ein hypothetisches umgebenes Medium entsteht eingeführt und die Auswirkung auf die Chaotizität gezeigt.
This shows the motion of a mass suspended from a spring. An accurate solution requires a small time step and RK4 as the integration algorithm.
This shows the motion of a mass suspended from a spring. An accurate solution requires a small time step and RK4 as the integration algorithm.
  object is projected with an initial velocity u at an angle to the horizontal direction.  We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantiti

object is projected with an initial velocity u at an angle to the horizontal direction.

We assume that there is no air resistance .Also since the body first goes up and then comes down after reaching the highest point , we will use the Cartesian convention for signs of different physical quantities. The acceleration due to gravity 'g' will be negative as it acts downwards.

h=v_ox*t-g*t^2/2

l=v_oy*t
 Perceptual Control Theory Model of Balancing an Inverted Pendulum. See  Kennaway's slides  on Robotics. as well as PCT example WIP notes. Compare with  IM-1831  from Z209 from Hartmut Bossel's System Zoo 1 p112-118

Perceptual Control Theory Model of Balancing an Inverted Pendulum. See Kennaway's slides on Robotics. as well as PCT example WIP notes. Compare with IM-1831 from Z209 from Hartmut Bossel's System Zoo 1 p112-118

This system models the equation of motion of a projectile in the horizontal (x) and vertical (y) directions, with a linear drag force. The drag is quantified by a drag coefficient C, which can be set by means of a slider.    Note that the equation has been made non-dimensional by measuring time in u
This system models the equation of motion of a projectile in the horizontal (x) and vertical (y) directions, with a linear drag force. The drag is quantified by a drag coefficient C, which can be set by means of a slider.

Note that the equation has been made non-dimensional by measuring time in units of v_0/g, and distance in units of v_0^2/g. In these units, the acceleration due to gravity is simply 1. Also the "seconds" in the time axis of the graphs really means the time units defined here. Also in these units the initial speed is simply 1. 

The inclination has been fixed at Pi/2. A later version will let this change with a slider.

One of the displays is y vs. x, which shows the trajectory of the projectile. 
This shows the motion of a simple harmonic oscillator, described in terms of the natural frequency of oscillation. An accurate solution requires a small time step and RK4 as the integration algorithm.
This shows the motion of a simple harmonic oscillator, described in terms of the natural frequency of oscillation. An accurate solution requires a small time step and RK4 as the integration algorithm.