Your browser (Internet Explorer 8 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.

X

# Physics

#### Lançamento Oblíquo no vácuo (ñ)

Um corpo é lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:

a) Os módulos das componentes horizontal e vertical da velocidade no instante de lançamento;

b) O instante em que o corpo atinge o ponto mais alto da trajetória;

c) A altura máxima atingida pelo corpo;

d) O alcance do lançamento.

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Oblíquo no vácuo.

• 3 years 11 months ago

#### Free fall with linear drag

This system models the equation of motion of a projectile in the horizontal (x) and vertical (y) directions, with a linear drag force. The drag is quantified by a drag coefficient C, which can be set by means of a slider.
Note that the equation has been made non-dimensional by measuring time in units of v_0/g, and distance in units of v_0^2/g. In these units, the acceleration due to gravity is simply 1. Also the "seconds" in the time axis of the graphs really means the time units defined here. Also in these units the initial speed is simply 1.
The inclination has been fixed at Pi/2. A later version will let this change with a slider.
One of the displays is y vs. x, which shows the trajectory of the projectile.
• 4 years 1 month ago

#### Time Scale Tensor Geometric Grassmann Calculus

This model keeps track of the formal development of Timescale calculus available at http://mds.marshall.edu/cgi/viewcontent.cgi?article=1036&context=etd&sei-redir=1&referer=http%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3Dtime%2520scale%2520calculus%26source%3Dweb%26cd%3D8%26sqi%3D2%26ved%3D0CFgQFjAH%26url%3Dhttp%253A%252F%252Fmds.marshall.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%253D1036%2526context%253Detd%26ei%3Dd5peUOTkOan2igLrqICoDQ%26usg%3DAFQjCNH3g65pFJ4LV38xiG7FIfRexA9uiA .

The idea is to use infinitesimals to extend Geometric and Grassmann Algebra to better flush out the details of the interpretation of an unbound vector as a "massless point at the point at infinity". Essentially, the Grassmann and Geomeric Algebra is being generalized to admit multiplication of vectors by infinitesimals, not just real numbers. Doing so allows one to define a concept of a point approaching infinity without having to use limits. This is a work in progress, and so some of the ideas in the above description will likely change as more is descovered as the research unfolds.
• 5 years 3 months ago

#### 1D Falling Object

Simple example of a 1D falling object, comparing the use of direct equations, with "solving" the differential equation using flows (dQ/dt) and stocks (Q).
• 6 years 7 months ago

#### Clone of Clone of Clone of THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES CHAOTIC TURBULENCE (+controls)

THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

• 1 year 4 months ago

#### Lançamento Horizontal no vácuo (ñ)

Após uma enchente, um grupo de pessoas ficou ilhado numa região. Um avião de salvamento, voando horizontalmente a uma altura de 720 m e mantendo uma velocidade de v = 50m/s, aproxima-se do local para que um pacote com medicamentos e alimentos seja lançado para as pessoas isoladas. A que distância, na direção horizontal, o pacote deve ser abandonado para que caia junto às pessoas? Despreze a resistência do ar e adote um g = 10m/s².

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Horizontal no vácuo.

• 3 years 8 months ago

#### Clone of FORCED GROWTH INTO TURBULENCE

FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION
BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

• 5 years 11 months ago