​S-Curve + Delay for Bell Curve Showing Erlang Distribution      Generation of Bell Curve from Initial Market through Delay in Pickup of Customers     This provides the beginning of an Erlang distribution model      The  Erlang distribution  is a two parameter family of continuous  probability dis
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.

 Fall with weight force, air friction force (e.g. an air balloon)  and buoyancy force of the balloon in air
Fall with weight force, air friction force (e.g. an air balloon) and buoyancy force of the balloon in air
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
 
  Um veículo parte do
repouso em movimento retilíneo e acelera com aceleração escalar constante e
igual a 2,0 m/s2. Pode-se dizer que sua velocidade escalar e a distância
percorrida após 3,0 segundos, valem, respectivamente:   Fonte: FUVEST -2004   Clique aqui  para ver uma descrição do que é  Mov

Um veículo parte do repouso em movimento retilíneo e acelera com aceleração escalar constante e igual a 2,0 m/s2. Pode-se dizer que sua velocidade escalar e a distância percorrida após 3,0 segundos, valem, respectivamente:

Fonte: FUVEST -2004

Clique aqui para ver uma descrição do que é Movimento Uniformemente Variado

 Dieses Modell simuliert das Anfahren eines Gelenktriebwagens der Firma Stadler Rail. Mehr dazu im Video "Physik im Jahr 2053"  https://youtu.be/RMOv8A0MvyY
Dieses Modell simuliert das Anfahren eines Gelenktriebwagens der Firma Stadler Rail. Mehr dazu im Video "Physik im Jahr 2053"
https://youtu.be/RMOv8A0MvyY
 NOT YET FUNCTIONAL  This is a simple energy balance model of radiation through the atmosphere. It's a simple single layer model.

NOT YET FUNCTIONAL

This is a simple energy balance model of radiation through the atmosphere. It's a simple single layer model.

 Z207 from Hartmut Bossel System Zoo 1 p103-107  After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior

Z207 from Hartmut Bossel System Zoo 1 p103-107


After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior
 Schwingkreis mit Generator: Erzwungene Schwingung   UG = UL + UC + UR
Schwingkreis mit Generator: Erzwungene Schwingung
UG = UL + UC + UR
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION  The existing global capitalistic growth paradigm is totally flawed  Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a compon
THE BROKEN LINK BETWEEN SUPPLY AND DEMAND CREATES TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

Growth in supply and productivity is a summation of variables as is demand ... when the link between them is broken by catastrophic failure in a component the creation of unpredictable chaotic turbulence puts the controls ito a situation that will never return the system to its initial conditions as it is STIC system (Lorenz)

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite working containers (villages communities)

Cette simulation est une version optimisée de l'eaurdinateur, dans laquelle on a utilisé l'influence d'un flux sur un autre pour économiser les réservoirs utilisés pour diviser par deux les flux de sortie des portes AND.   Nous n'avons malheureusement pas réussi à changer la couleur de l'état en fon
Cette simulation est une version optimisée de l'eaurdinateur, dans laquelle on a utilisé l'influence d'un flux sur un autre pour économiser les réservoirs utilisés pour diviser par deux les flux de sortie des portes AND.

Nous n'avons malheureusement pas réussi à changer la couleur de l'état en fonction de sa valeur. Celle-ci peut être changée dans le panneau de configuration, afin de tester des valeurs différentes.

On notera que pour obtenir un résultat correct, deux conditions sont nécessaires:
1°) Il faut attendre que les flux dans les portes se stabilisent, ce qui prend pas moins de 10 secondes (et qui reflète le délai de latence inhérent à tout circuit, qui correspond environ au nombre maximum de portes logiques traversées entre l'entrée et la sortie du circuit.
2°) Il faut utiliser la méthode de simulation basée sur une approximation de Runge-Kutta, sous peine de voir apparaître des oscillations parasites dans certaines portes qui rendent le résultat instable.


How gravity and air drag interact to create terminal velocity.
How gravity and air drag interact to create terminal velocity.
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
A simple model of a capacitor being charged. The instantaneous charge grows at a rate equal to the difference between it and the final charge, given as CV, divided by a time constant, which can set with a slider.
A simple model of a capacitor being charged. The instantaneous charge grows at a rate equal to the difference between it and the final charge, given as CV, divided by a time constant, which can set with a slider.
 
  Após uma
enchente, um grupo de pessoas ficou ilhado numa região. Um avião de salvamento,
voando horizontalmente a uma altura de 720 m e mantendo uma velocidade de v = 50m/s, aproxima-se do local para
que um pacote com medicamentos e alimentos seja lançado para as pessoas
isoladas. A que distânci

Após uma enchente, um grupo de pessoas ficou ilhado numa região. Um avião de salvamento, voando horizontalmente a uma altura de 720 m e mantendo uma velocidade de v = 50m/s, aproxima-se do local para que um pacote com medicamentos e alimentos seja lançado para as pessoas isoladas. A que distância, na direção horizontal, o pacote deve ser abandonado para que caia junto às pessoas? Despreze a resistência do ar e adote um g = 10m/s².

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Horizontal no vácuo.