Insight diagram
Ein mg 214Pb zerfällt in 214Bi, danach in 214Po, dann blitzschnell in 210Pb.
Radioaktiver Zerfall
Insight diagram
Clone of Rocket Model 2015 DiCarlo
Insight diagram
This shows the motion of a mass suspended from a spring. An accurate solution requires a small time step and RK4 as the integration algorithm.
Simple harmonic oscillator
Insight diagram
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Clone of Clone of Clone of Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK
Insight diagram
Spring-Mass model used in IACS physics class
Clone of Spring-Mass Model
Insight diagram
Simple Pendulum
Insight diagram
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Clone of Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK
Insight diagram
Problem of the sliding chain
Sliding Chain
Insight diagram

Uma empresa de transportes precisa efetuar a entrega de uma encomenda o mais breve possível. Para tanto, a equipe de logística analisa o trajeto desde a empresa até o local da entrega. Ela verifica que o trajeto apresenta dois trechos de distâncias diferentes e velocidades máximas permitidas diferentes. No primeiro trecho, a velocidade máxima permitida é de 80 km/h e a distância a ser percorrida é de 80 km. No segundo trecho, cujo comprimento vale 60 km, a velocidade máxima permitida é 120 km/h. Supondo que as condições de trânsito sejam favoráveis para que o veículo da empresa ande continuamente na velocidade máxima permitida, qual será o tempo necessário, em horas, para a realização da entrega? 

Fonte: Enem 2012

Clique aqui para ver uma descrição do que é Movimento Uniforme.

Clone of Movimento Uniforme
Insight diagram
Spring-Mass-Damper model (based on IACS physics)
Spring-Mass-Damper Model
Insight diagram
Spring-Mass model used in IACS physics class
Clone of Spring-Mass Model
Insight diagram
conducción térmica 2D 4x4
Insight diagram
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Clone of BATHTUB MEAN TIME BETWEEN FAILURE (MTBF) RISK
Insight diagram
​The probability density function (PDF) of the normal distribution or Bell Curve of Normal or Gaussian Distribution is the mean or expectation of the distribution (and also its median and mode). 

The parameter is its standard deviation with its variance then, A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.
However, those who enjoy upskirts are called deviants and have a variable distribution :) 

A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.

If mu = 0 and sigma = 1

If the Higher Education Numbers Are Increased then the group decision making ability of society would be raised above that of a middle teenager as it is now
BUT 
Governments can control children by using bad parenting techniques, pandering to the pleasure principle, so they will make higher education more and more difficult as they are doing


85% of the population has a qualification level equal or below a 12th grader, 17 year old ... the chance of finding someone with any sense is low (~1 in 6) and the outcome of them being chosen by those who are uneducated in the policies they are to decide is even more rare !!!

Experience means little if you don't have enough brain to analyse it

Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

Democracy:  Where a group allows the decision ability of a teenager to decide on a choice of mis-representatives who are unqualified to make judgement on social policies that affect the lives of millions.
The kind of children who would vote for King Kong who can hold a girl in one hand and swat fighter jets out of teh sky off the tallest building, doesn't have a brain cell or thought to call his own but has a nice smile and offers little girls sweets.



Clone of Clone of ​The probability density function (PDF) of the normal distribution or Bell Curve Gaussian Distribution by Guy Lakeman
Insight diagram

Clique aqui para ver uma descrição do que é Movimento Uniformemente Variado

Exemplo:

(FUVEST -2004) Um veículo parte do repouso em movimento retilíneo e acelera com aceleração escalar constante e igual a 2,0 m/s2. Pode-se dizer que sua velocidade escalar e a distância percorrida após 3,0 segundos, valem, respectivamente:

Clone of Movimento Uniformemente Variado
Insight diagram
An steel cylinder oscillates inside a glass tube and over confined air within a glass bottle. As consecuence one observes an oscilation of the inside presure and the inner energy (temperature).
Clone of Rüchardts experiment 24 11 2023
Insight diagram
OVERSHOOT GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Clone of OVERSHOOT GROWTH INTO TURBULENCE
Insight diagram
Grundmodell der Newtonschen Mechanik angewendet auf den freien Fall
Freier_Fall
Insight diagram
RC-curve van een condensator
Insight diagram
In diesem Modell wird das Verhalten, also die Positionsänderungen von drei Körpern innerhalb eines Bezugssystems aufgrund der Gravitationskraft simuliert. Je nach Änderung der Parameter (Masse, Ausgangsposition, Radius der Massen(-punkte) ​variiert auch die Chaotizität des System.
Zusätzlich wird als Gedankenexperiment die Reibungskraft die durch ein hypothetisches umgebenes Medium entsteht eingeführt und die Auswirkung auf die Chaotizität gezeigt.
3-Körper-Problem mit Reibung
Insight diagram
Rocket Model - Mac Rozen
Insight diagram
Clone of Josh Doherty's Rocket Model
Insight diagram
Spring-Mass model used in IACS physics class
Clone of Spring-Mass Model
Insight diagram
Erzwungene Schwingung
Spule_im_Wechselstromkreis