Modelo epidemiológico simples   SIR: Susceptíveis - Infectados - Recuperados         Clique aqui  para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.          Dados iniciais de  infec
Modelo epidemiológico simples
SIR: Susceptíveis - Infectados - Recuperados

Clique aqui para ver um vídeo com a apresentação sobre a construção e uso deste modelo.  É recomendável ver o vídeo num computador de mesa para se poder ver os detalhes do modelo.


Dados iniciais de infectados, recuperados e óbitos para diversos países (incluindo o Brasil) podem ser obtidos aqui neste site.
This stock-flow simulation model is to show Covid-19 virus spread rate, sources of spreading and safety measures followed by all the countries affected around the world. The simulation also aims at predicting for how much more period of time the virus will persist, how many people could recover at w
This stock-flow simulation model is to show Covid-19 virus spread rate, sources of spreading and safety measures followed by all the countries affected around the world.
The simulation also aims at predicting for how much more period of time the virus will persist, how many people could recover at what kind of rate and also about the virus toughness dependence based on its excessive speed, giving rise to bigger numbers day-by-day.
9 months ago
The System Dynamics Model presents the the COVID-19 status in Сhina
The System Dynamics Model presents the the COVID-19 status in Сhina
8 months ago
 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
The SEIRS(D) model for the purpose of experimenting with the phenomena of viral spread. I use it for COVID-19 simulation.
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
A simple ABM example illustrating how the SEIR model works. It can be a basis for experimenting with learning the impact of human behavior on the spread of a virus, e.g. COVID-19.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 Modelo epidemiológico simples   SIR: Susceptíveis -Infectados - Recuperados        Ajuste os PARÂMETROS abaixo.  Clique em SIMULATE no menu superior para simular.  Dados iniciais de 04 Abr 2020  Fonte:  https://www.worldometers.info/coronavirus/country/brazil/
Modelo epidemiológico simples
SIR: Susceptíveis -Infectados - Recuperados

Ajuste os PARÂMETROS abaixo.
Clique em SIMULATE no menu superior para simular.
Dados iniciais de 04 Abr 2020
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
Model di samping adalah model SEIR yang telah dimodifikasi sehingga dapat digunakan untuk menyimulasikan perkembangan penyebaran COVID-19.
  Overview:
  

 The
COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak,
the impacts of government policy on both the COVID-19 outbreak and the GDP
growth in Burnie.  

  Assumptions:  

 We set some
variables at fix rates, including the immunity loss rate, recovery rate, de

Overview:

The COVID-19 Outbreak in Burnie Tasmania shows the process of COVID-19 outbreak, the impacts of government policy on both the COVID-19 outbreak and the GDP growth in Burnie.

Assumptions:

We set some variables at fix rates, including the immunity loss rate, recovery rate, death rate, infection rate and case impact rate, as they usually depend on the individual health conditions and social activities.

It should be noticed that we set the rate of recovery, which is 0.7, is higher than that of immunity loss rate, which is 0.5, so, the number of susceptible could be reduced over time.

Adjustments: (please compare the numbers at week 52)

Step 1: Set all the variables at minimum values and simulate

results: Number of Infected – 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.

Step 2: Increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate

results: Number of Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).

So, the increase of health policy, quarantine and travel restriction will help increase recovery, decrease confirmed cases, decrease death, but also decrease GDP.

Step 3: Increase the variables of Testing Rate to 0.4, others keep the same as step 2, and simulate

results: Number of Infected – 152 (down); Recovered – 243 (down); Cases – 1022 (up); Death – 17,625 (down); GDP – 824 (same).

So, the increase of testing rate will help to increase the confirmed cases.

Step 4: Change GDP Growth Rate to 0.14, Tourism Growth Rate to 0.02, others keep the same as step 3, and simulate

results: Number of Infected – 152 (same); Recovered – 243 (same); Cases – 1022 (same); Death – 17,625 (same); GDP – 6,632 (up).

So, the increase of GDP growth rate and tourism growth rate will helps to improve the GDP in Burnie.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
This basic pandemic model explores the dynamics and healthcare burden associated with of a novel infection.
This basic pandemic model explores the dynamics and healthcare burden associated with of a novel infection.
  Overview:   Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.      Variables   The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): D

Overview:

Overall, this analysis showed a COVID-19 outbreak in Burnie, the government policies to curtail that, and some of the impacts it is having on the Burnie economy.


Variables

The simulation made use of the variables such as; Covid-19: (1): Infection rate. (2): Recovery rate. (3): Death rate. (4): Immunity loss rate etc. 


Assumptions:

From the model, it is apparent that government health policies directly affect the economic output of Burnie. A better health policy has proven to have a better economic condition for Burnie and verse versa.


In the COVID-19 model, some variables are set at fixed rates, including the immunity loss rate, recovery rate, death rate, infection rate, and case impact rate, as this is normally influenced by the individual health conditions and social activities.

Moving forward, we decided to set the recovery rate to 0.7, which is a rate above the immunity loss rate of 0.5, so, the number of susceptible could be diminished over time.


Step 1: Try to set all value variables at their lowest point and then stimulate. 

 

Outcome: the number of those Infected are– 135; Recovered – 218; Cases – 597; Death – 18,175; GDP – 10,879.


Step 2: Try to increase the variables of Health Policy, Quarantine, and Travel Restriction to 0.03, others keep the same as step 1, and simulate


Outcome: The number of those Infected – 166 (up); Recovered – 249 (up); Cases – 554 (down); Death – 18,077 (down); GDP – 824 (down).


With this analysis, it is obvious that the increase of health policy, quarantine, and travel restriction will assist in increase recovery rate, a decrease in confirmed cases, a reduction in death cases or fatality rate, but a decrease in Burnie GDP.


Step 3: Enlarge the Testing Rate to 0.4, variable, others, maintain the same as step 2, and simulate


Outcome: It can be seen that the number of Infected is down to – 152; those recovered down to – 243; overall cases up to – 1022; those that died down to–17,625; while the GDP remains – 824.


In this step, it is apparent that the increase of testing rate will assist to increase the confirmed cases.


Step 4: Try to change the GDP Growth Rate to 0.14, then Tourism Growth Rate to 0.02, others keep the same as step 3, and then simulate the model


Outcome: what happens is that the Infected number – 152 remains the same; Recovered rate– 243 the same; Number of Cases – 1022 (same); Death – 17,625 (same); but the GDP goes up to– 6,632. 


This final step made it obvious that the increase of GDP growth rate and tourism growth rate will help to improve the overall GDP performance of Burnie's economy.

 Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

Here we have a basic SEIR model and we will investigate what changes would be appropriate for modelling the 2019 Coronavirus 

The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
The System Dynamics Model presents the the COVID-19 status in Puerto Princesa City
 Ausbreitung von SARS-CoV-19 in verschiedenen Ländern - bitte passen Sie die Variablen über die Schieberegler weiter unten entsprechend an  Italien      ältere Bevölkerung (>65): 0,228     Faktor der geschätzten unentdeckten Fälle: 0,6     Ausgangsgröße der Bevölkerung: 60 000 000     hoher Blutd
Ausbreitung von SARS-CoV-19 in verschiedenen Ländern
- bitte passen Sie die Variablen über die Schieberegler weiter unten entsprechend an

Italien

    ältere Bevölkerung (>65): 0,228
    Faktor der geschätzten unentdeckten Fälle: 0,6
    Ausgangsgröße der Bevölkerung: 60 000 000
    hoher Blutdruck: 0,32 (gbe-bund)
    Herzkrankheit: 0,04 (statista)
    Anzahl der Intensivbetten: 3 100


Deutschland

    ältere Bevölkerung (>65): 0,195 (bpb)
    geschätzte unentdeckte Fälle Faktor: 0,2 (deutschlandfunk)
    Ausgangsgröße der Bevölkerung: 83 000 000
    hoher Blutdruck: 0,26 (gbe-bund)
    Herzkrankheit: 0,2-0,28 (Herzstiftung)
   
Anzahl der Intensivbetten: 5 880


Frankreich

    ältere Bevölkerung (>65): 0,183 (statista)
    Faktor der geschätzten unentdeckten Fälle: 0,4
    Ausgangsgröße der Bevölkerung: 67 000 000
    Bluthochdruck: 0,3 (fondation-recherche-cardio-vasculaire)
    Herzkrankheit: 0,1-0,2 (oecd)
   
Anzahl der Intensivbetten: 3 000


Je nach Bedarf:

    Anzahl der Begegnungen/Tag: 1 = Quarantäne, 2-3 = soziale Distanzierung , 4-6 = erschwertes soziales Leben, 7-9 = überhaupt keine Einschränkungen // Vorgabe 2
    Praktizierte Präventivmassnahmen (d.h. sich regelmässig die Hände waschen, das Gesicht nicht berühren usw.): 0.1 (niemand tut etwas) - 1 (sehr gründlich) // Vorgabe 0.8
    Aufklärung durch die Regierung: 0,1 (sehr schlecht) - 1 (sehr transparent und aufklärend) // Vorgabe 0,9
    Immunitätsrate (aufgrund fehlender Daten): 0 (man kann nicht immun werden) - 1 (wenn man es einmal hatte, wird man es nie wieder bekommen) // Vorgabe 0,4


Schlüssel

    Anfällige: Menschen sind nicht mit SARS-CoV-19 infiziert, könnten aber infiziert werden
    Infizierte: Menschen sind infiziert worden und haben die Krankheit COVID-19
    Geheilte: Die Menschen haben sich gerade von COVID-19 erholt und können es in diesem Stadium nicht mehr bekommen
    Tote: Menschen starben wegen COVID-19
    Immunisierte: Menschen wurden immun und können die Krankheit nicht mehr bekommen
    Kritischer Prozentsatz der Wiederherstellung: Überlebenschance ohne spezielle medizinische Behandlung