MAT375: Non-linear Exam....      This insight implements Newton's method as an InsightMaker model.       It is important to use Euler's method, with step-size of 1. That's what allows us to get away with this!:)      Fun to try a couple of different cases, so I have built four choices into this exa
MAT375: Non-linear Exam....

This insight implements Newton's method as an InsightMaker model.

It is important to use Euler's method, with step-size of 1. That's what allows us to get away with this!:)

Fun to try a couple of different cases, so I have built four choices into this example. You can choose the function ("Function Choice" of 0, 1, 2, or 3) using the slider.

Andy Long
Spring, 2020




This is an introductory example from Olinick's book  An Introduction to Mathematical Models in the Social and Life Sciences . ​  Next up: and SIR, and his interesting model of female birth weights.
This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Next up: and SIR, and his interesting model of female birth weights.
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
 MAT375: Non-linear Exam....      This insight implements Newton's method as an InsightMaker model.       It is important to use Euler's method, with step-size of 1. That's what allows us to get away with this!:)      Fun to try a couple of different cases, so I have built four choices into this exa
MAT375: Non-linear Exam....

This insight implements Newton's method as an InsightMaker model.

It is important to use Euler's method, with step-size of 1. That's what allows us to get away with this!:)

Fun to try a couple of different cases, so I have built four choices into this example. You can choose the function ("Function Choice" of 0, 1, 2, or 3) using the slider.

Andy Long
Spring, 2020




This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.   There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again
This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.   There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again
This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

This is an introductory example from Olinick's book  An Introduction to Mathematical Models in the Social and Life Sciences . ​  Galla age distribution model.  Thanks Mike! Interesting examples, as always.... Andy Long  Next up: an SIR.
This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Galla age distribution model.

Thanks Mike! Interesting examples, as always....
Andy Long

Next up: an SIR.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.   There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again
This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

This is an introductory example from Olinick's book  An Introduction to Mathematical Models in the Social and Life Sciences . ​  "A recent study focused on the relationship between the birth weights of English women and the birth weights of their daughters. The weights were split into three categori
This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

"A recent study focused on the relationship between the birth weights of English women and the birth weights of their daughters. The weights were split into three categories: low (below 6 pounds), average (between 6 and 8 pounds), and high (above 8 pounds). Among women whose own birth weights were low, 50 percent of the daughters had low birth weights, 45 percent had average weights, and 5 percent had high weights. Women with average birth weights had daughters with average weights half of the time, while the half was split evenly between low and high categories. Women with high birth weights had female babies with high weights 40 percent of the time, with low and average weights each occuring 30 percent of the time." p. 274-275.

For the Markov chain, you should make sure that you're taking time steps of length 1 in the settings, and Euler. RK-4 effectively looks beyond a single previous step, so it has a sort of memory!

Thanks Mike! Interesting examples, as always....
Andy Long

Next up: an SIR.
 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources:
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

Thanks to Jacob Englert for the model if-then-else structure.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.   There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again
This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.   There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again
This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

This is an introductory example from Olinick's book  An Introduction to Mathematical Models in the Social and Life Sciences . ​  Next up: and SIR, and his interesting model of female birth weights.
This is an introductory example from Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

Next up: and SIR, and his interesting model of female birth weights.
This is an example I thought of after reading Olinick's book  An Introduction to Mathematical Models in the Social and Life Sciences . ​  It's an SIR-type model, but one where the equilibrium (ws,wi,wr) is always the same, even as the weights in the transition matrix change.  Actually it might be be
This is an example I thought of after reading Olinick's book An Introduction to Mathematical Models in the Social and Life Sciences. ​

It's an SIR-type model, but one where the equilibrium (ws,wi,wr) is always the same, even as the weights in the transition matrix change.

Actually it might be better to think of this as a poisoning model: the rate of infection is constant, and independent of the existence of an infected population. That's more like disease due to an environmental effect (e.g. lead-poisoning from smelters, or mercury poisoning from the burning of coal). So infected would mean "effected", and "recovered" might be "treated" -- and ultimately released, to be exposed again.

This shows that the equilibrium does not determine the transition probabilities: two different transition matrices can have the same ultimate equilibrium.

There is a constraint on the infection rate that I haven't figured out how to build in:

InfectionRate < Min[1,wi/ws, wr/ws]

I can allow InfectionRate to vary up to 1 if I take
ws < wi
and
ws < wr
However if you violate that, you'll get interesting solutions with negative values of populations. The dynamics are pretty interesting in that case, however! If you want to see them, you'll have to remove the constraints that I put on the parameters in the Recover and LossOfImmunity parameters.

Thanks Mike! Interesting examples, as always....
Andy Long

This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.   There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again
This is a first example of a simple SIR (Susceptible, Infected, Recovered) model.

There are three pools of individuals: those who are infected (without them, no disease!), the pool of those who are at risk (susceptible), and the recovered -- who may lose their immunity and become susceptible again.

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel.nb

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries,  et al . in  A Course in Mathematical Biology.    They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that different
This is a simple example of (part of a) simple SIR (Susceptible, Infected, Recovered) model, suggested by De Vries, et al. in A Course in Mathematical Biology.

They wanted to illustrate the comparative behavior of differential equations and discrete difference equations. We know that differential equations are generally solved numerically by discretizing them, so that the comparison is a little bit rigged....

A comparable model in Mathematica is available at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/SIRModel-w-discrete-version.nb