This shows the motion of a damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency. An accurate solution requires a small time step and RK4 as the integration
This shows the motion of a damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency. An accurate solution requires a small time step and RK4 as the integration algorithm.
 Dieses Modell simuliert das Anfahren eines Gelenktriebwagens der Firma Stadler Rail. Mehr dazu im Video "Physik im Jahr 2053"  https://youtu.be/RMOv8A0MvyY
Dieses Modell simuliert das Anfahren eines Gelenktriebwagens der Firma Stadler Rail. Mehr dazu im Video "Physik im Jahr 2053"
https://youtu.be/RMOv8A0MvyY
This shows the motion of a driven damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency.     The oscillator is driven with a force that is a sine function o
This shows the motion of a driven damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency. 

The oscillator is driven with a force that is a sine function of time, with a frequency that can be varied, expressed as a forcing ratio driving frequency/natural frequency.

An accurate solution requires a small time step and RK4 as the integration algorithm.
 Grundmodell der Newtonschen Mechanik angewendet auf den Fall mit Luftreibung (z.B. Fallschirmspringen)
Grundmodell der Newtonschen Mechanik angewendet auf den Fall mit Luftreibung (z.B. Fallschirmspringen)
 
  Um corpo é
lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com
a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:   a) Os módulos das componentes horizontal e vertical da
velocidade no instante de lançamento;  b)

Um corpo é lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:

a) Os módulos das componentes horizontal e vertical da velocidade no instante de lançamento;

b) O instante em que o corpo atinge o ponto mais alto da trajetória;

c) A altura máxima atingida pelo corpo;

d) O alcance do lançamento.

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Oblíquo no vácuo.

A PID control loop for a simple linear system Some stochasticity in the throttle and sensor ​
A PID control loop for a simple linear system
Some stochasticity in the throttle and sensor ​
Simple example of a 1D bouncing ball, where the ground is modeled as a spring. Air friction is included as a force proportional to air speed.
Simple example of a 1D bouncing ball, where the ground is modeled as a spring. Air friction is included as a force proportional to air speed.