​S-Curve + Delay for Bell Curve Showing Erlang Distribution      Generation of Bell Curve from Initial Market through Delay in Pickup of Customers     This provides the beginning of an Erlang distribution model      The  Erlang distribution  is a two parameter family of continuous  probability dis
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.

Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Oscillator with limit cycle from Z202 System Zoo 1 p84-87
Oscillator with limit cycle from Z202 System Zoo 1 p84-87
Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
 
  Após uma
enchente, um grupo de pessoas ficou ilhado numa região. Um avião de salvamento,
voando horizontalmente a uma altura de 720 m e mantendo uma velocidade de v = 50m/s, aproxima-se do local para
que um pacote com medicamentos e alimentos seja lançado para as pessoas
isoladas. A que distânci

Após uma enchente, um grupo de pessoas ficou ilhado numa região. Um avião de salvamento, voando horizontalmente a uma altura de 720 m e mantendo uma velocidade de v = 50m/s, aproxima-se do local para que um pacote com medicamentos e alimentos seja lançado para as pessoas isoladas. A que distância, na direção horizontal, o pacote deve ser abandonado para que caia junto às pessoas? Despreze a resistência do ar e adote um g = 10m/s².

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Horizontal no vácuo.

  Path of a ball either dropped or thrown up vertically
Path of a ball either dropped or thrown up vertically
 
  Após uma
enchente, um grupo de pessoas ficou ilhado numa região. Um avião de salvamento,
voando horizontalmente a uma altura de 720 m e mantendo uma velocidade de v = 50m/s, aproxima-se do local para
que um pacote com medicamentos e alimentos seja lançado para as pessoas
isoladas. A que distânci

Após uma enchente, um grupo de pessoas ficou ilhado numa região. Um avião de salvamento, voando horizontalmente a uma altura de 720 m e mantendo uma velocidade de v = 50m/s, aproxima-se do local para que um pacote com medicamentos e alimentos seja lançado para as pessoas isoladas. A que distância, na direção horizontal, o pacote deve ser abandonado para que caia junto às pessoas? Despreze a resistência do ar e adote um g = 10m/s².

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Horizontal no vácuo.

The underlying differential equation for this very minimal model is a non-dimensional version of the equation for an RC circuit, with charge measured in units of C*emf, and time measured in units of RC.
The underlying differential equation for this very minimal model is a non-dimensional version of the equation for an RC circuit, with charge measured in units of C*emf, and time measured in units of RC.
 
   HORIZONTAL THROW   IN VACUUM   After a flood, a group of people were left in one area. A rescue plane, flying horizontally at a height of 720 m and maintaining a speed of v = 50m / s, approaches the scene for a packet of medicines and food to be launched to isolated people. How far in the horiz

HORIZONTAL THROW IN VACUUM

After a flood, a group of people were left in one area. A rescue plane, flying horizontally at a height of 720 m and maintaining a speed of v = 50m / s, approaches the scene for a packet of medicines and food to be launched to isolated people. How far in the horizontal direction should the package be dropped so that it falls with people? Disregard air resistance and adopt g = 10m / s².


Source: RAMALHO, NICOLAU AND TOLEDO; Fundamentos de Física, Volume 1, 8th edition, pp. 12 - 169, 2003).

This model may be cloned and modified without prior permission of the authors. Thanks for quoting the source.

 
  Uma roda-gigante
de raio 14 m gira em torno de um eixo horizontal. Um passageiro sentado em uma
cadeira, move-se com velocidade linear v=7 m/s. Determine:   a) a velocidade angular do
movimento.  b) o módulo da aceleração
centrípeta do passageiro.  c) em quanto tempo o
passageiro executa uma vol

Uma roda-gigante de raio 14 m gira em torno de um eixo horizontal. Um passageiro sentado em uma cadeira, move-se com velocidade linear v=7 m/s. Determine:

a) a velocidade angular do movimento.

b) o módulo da aceleração centrípeta do passageiro.

c) em quanto tempo o passageiro executa uma volta completa.

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Movimento Circular.

 Grundmodell der Newtonschen Mechanik angewendet auf den freien Fall
Grundmodell der Newtonschen Mechanik angewendet auf den freien Fall
This shows the motion of a driven damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency.     The oscillator is driven with a force that is a sine function o
This shows the motion of a driven damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency. 

The oscillator is driven with a force that is a sine function of time, with a frequency that can be varied, expressed as a forcing ratio driving frequency/natural frequency.

An accurate solution requires a small time step and RK4 as the integration algorithm.