The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors. THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST W

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Simple mass balance model for lakes based on the Vollenweider equation:  dMw/dt = Min - sMw + pMs - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version considers mercury, and adds diagenesis, using
Simple mass balance model for lakes based on the Vollenweider equation:

dMw/dt = Min - sMw + pMs - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version considers mercury, and adds diagenesis, using an extra state variable (mercury in the sediment), and incorporates desorption processes that release mercury trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low Hg concentration in lake
2. High loading, increasing Hg concentration in lake
3. Desorption rate is low, Hg in sediment increases
4. Measures implemented for source control, loading reduces
5. Hg in lake gradually decreases, but below a certain point, desorption increases, and lake Hg concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
   THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER REL

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

THE MODEL IS ZONE SPECIFIC AS GLOBAL WEATHER IS NOT HOMOGENEOUS BUT A COLLECTION OF HEAT BUMBPS DEPENDENT ON POPULATION SIZE OF URBAN HEAT ISLANDS AND MASSED CONURBATIONS AND AGGLOMERATIONS 

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Simple mass balance model for lakes based on the Vollenweider equation:  dMw/dt = Min - sMw + pMs - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version considers mercury, and adds diagenesis, using
Simple mass balance model for lakes based on the Vollenweider equation:

dMw/dt = Min - sMw + pMs - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version considers mercury, and adds diagenesis, using an extra state variable (mercury in the sediment), and incorporates desorption processes that release mercury trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low Hg concentration in lake
2. High loading, increasing Hg concentration in lake
3. Desorption rate is low, Hg in sediment increases
4. Measures implemented for source control, loading reduces
5. Hg in lake gradually decreases, but below a certain point, desorption increases, and lake Hg concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
Systems Zoo model Z308 Forest Dynamics (Bossel, 2007)
Systems Zoo model Z308 Forest Dynamics (Bossel, 2007)
2 months ago
This is a generalized, (static) Stock and Flow model of plastic through production to waste and pollution of the environment. It is an attachment to the New Community Paradigms blog post  "Dana" Meadows Helps Find Purpose and the Plastic in a System of Plastic Pollution
This is a generalized, (static) Stock and Flow model of plastic through production to waste and pollution of the environment. It is an attachment to the New Community Paradigms blog post "Dana" Meadows Helps Find Purpose and the Plastic in a System of Plastic Pollution
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
This model shows how a persistent pollutant such as mercury or DDT can be bioamplified along a trophic chain to levels that result in reduction of top predator populations.
 Congestion and air pollution in the city due to too many cars is the initial situation to which different responses can be made. Either investments are made in new roads and parking facilities. The result is that the number of cars increases and congestion and air pollution rise. Or one invests in
Congestion and air pollution in the city due to too many cars is the initial situation to which different responses can be made. Either investments are made in new roads and parking facilities. The result is that the number of cars increases and congestion and air pollution rise. Or one invests in the expansion of cycle paths and makes cycling in the city more comfortable. This would lead to a decrease in the number of cars and improve the initial situation.


   THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2018 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

  The current electricity portfolio of Texas  is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon

The current electricity portfolio of Texas is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon-intensive fossil fuels (e.g. natural gas).

As boundaries to our problem, we will be using 35 years as our time frame. We will also limit our model to the State of Texas as our spatial extent. Over the past decade, Texas is becoming a major natural gas consumer; the electricity portfolio has been gradually changing. However, around 40% of electricity is still generated from burning coal, and only a very minor portion of electricity is from renewables. Texas is betting better in adopting solar and wind energy, however generally speaking the state is still falling behind in renewable energy.

The two main goals are to lower the overall emission of greenhouse gases for the electricity grid and to encourage growth of cleaner, renewable energy resources.

Our objectives include maximizing the economic benefits of exploring unconventional oil and natural gas resources, diversifying the energy portfolio of Texas, encouraging the production and exportation of unconventional hydrocarbon resources, and reallocating the added revenue to the transition to renewables, like wind and solar

Measurements are in decimals. 0 signifies that the entity does not exist or does not have an impact. 1 signifies that it exists to its maximum degree or that all of the entity is being used/has an impact.
Measurements are in decimals. 0 signifies that the entity does not exist or does not have an impact. 1 signifies that it exists to its maximum degree or that all of the entity is being used/has an impact.
Simple mass balance model for lakes based on the Vollenweider equation:  dMw/dt = Min - sMw + pMs - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version considers mercury, and adds diagenesis, using
Simple mass balance model for lakes based on the Vollenweider equation:

dMw/dt = Min - sMw + pMs - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version considers mercury, and adds diagenesis, using an extra state variable (mercury in the sediment), and incorporates desorption processes that release mercury trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low Hg concentration in lake
2. High loading, increasing Hg concentration in lake
3. Desorption rate is low, Hg in sediment increases
4. Measures implemented for source control, loading reduces
5. Hg in lake gradually decreases, but below a certain point, desorption increases, and lake Hg concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
   THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.  WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER R

THE 2020 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION.
WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

  The current electricity portfolio of Texas  is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon

The current electricity portfolio of Texas is heavily reliant on high-emission sources of fossil fuel (i.e. Coal). Texas has a range of energy options at its disposal and has the opportunity to make choices that grow renewables (e.g. solar and wind) while encouraging the production of less carbon-intensive fossil fuels (e.g. natural gas).

As boundaries to our problem, we will be using 35 years as our time frame. We will also limit our model to the State of Texas as our spatial extent. Over the past decade, Texas is becoming a major natural gas consumer; the electricity portfolio has been gradually changing. However, around 40% of electricity is still generated from burning coal, and only a very minor portion of electricity is from renewables. Texas is betting better in adopting solar and wind energy, however generally speaking the state is still falling behind in renewable energy.

The two main goals are to lower the overall emission of greenhouse gases for the electricity grid and to encourage growth of cleaner, renewable energy resources.

Our objectives include maximizing the economic benefits of exploring unconventional oil and natural gas resources, diversifying the energy portfolio of Texas, encouraging the production and exportation of unconventional hydrocarbon resources, and reallocating the added revenue to the transition to renewables, like wind and solar