Influence of migration on the number of working-age population.
Influence of migration on the number of working-age population.
Influence of migration on the number of working-age population.
Influence of migration on the number of working-age population.
The poverty cycle.  My friend gave me the topic "poverty" and so I made this.
The poverty cycle.  My friend gave me the topic "poverty" and so I made this.
Migration Rate​https://www.indexmundi.com/russia/net_migration_rate.html    https://www.cia.gov/library/publications/the-world-factbook/fields/2112.html
Migration Rate​https://www.indexmundi.com/russia/net_migration_rate.html

https://www.cia.gov/library/publications/the-world-factbook/fields/2112.html

Influence of migration on the number of working-age population.
Influence of migration on the number of working-age population.
Show prediction of birth and death rate over time, creating the elements of the demographic transition. This one is for Morocco.
Show prediction of birth and death rate over time, creating the elements of the demographic transition. This one is for Morocco.
This is a population model designed for local health and care systems (United Kingdom). This model does not simulation male/female, but rather everyone in 5-year age groups.
This is a population model designed for local health and care systems (United Kingdom). This model does not simulation male/female, but rather everyone in 5-year age groups.
Exponential growth model for humans, based on birth rate and death rate, both a function of consumption.    Global ecosystem model with self-regenerating ecological capital, and ecological Impact (ecological footprint)
Exponential growth model for humans, based on birth rate and death rate, both a function of consumption.

Global ecosystem model with self-regenerating ecological capital, and ecological Impact (ecological footprint)
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
The SEQ Koala Population over recent years has suffered due to a number of factors; habitat loss, predators, natural disasters, health issues and road fatalities to name a few.  All the while conservation efforts are being made to aid the population growth of  the national icon.  This insight draws
The SEQ Koala Population over recent years has suffered due to a number of factors; habitat loss, predators, natural disasters, health issues and road fatalities to name a few.  All the while conservation efforts are being made to aid the population growth of  the national icon.

This insight draws together these contributing factors into a single population model (simulation).  This model begins with the known 2006 population and it projected based on current decline rates.  Accuracy is limited, however the downward trend is clearly evident.

Developed by Patrick O'Shaughnessy
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Von Foerster's doomsday equation says that population growth is hyperbolic because the exponent itself (the growth rate) is a function of population.
Von Foerster's doomsday equation says that population growth is hyperbolic because the exponent itself (the growth rate) is a function of population.
This is a first attempt to model I=PAT population growth. Impact on the renewables is equal to P*A*T. Footprint is limited by the amount of renewables left divided by the population. Death rate goes up if the Footprint goes down too far.
This is a first attempt to model I=PAT population growth. Impact on the renewables is equal to P*A*T. Footprint is limited by the amount of renewables left divided by the population. Death rate goes up if the Footprint goes down too far.